
Modelica Development Tooling for Eclipse

Elmir Jagudin
Andreas Remar

Contents

1 Introduction 4
1.1 Intended audience . 4
1.2 Thesis contributions . 5
1.3 Thesis outline . 5

2 Background 6
2.1 Modelica . 6
2.2 Eclipse . 6

2.2.1 Eclipse Platform Architecture 6
2.3 OpenModelica Compiler . 7

3 Architecture 9
3.1 org.modelica.mdt.core . 9

3.1.1 Component access layer 9
3.1.2 Modelica projects . 10
3.1.3 Folders . 10
3.1.4 Files . 10
3.1.5 Classes . 10
3.1.6 Components . 11
3.1.7 Mapping to the source code 11
3.1.8 Modelica Standard Library 11
3.1.9 Tracking element changes 12
3.1.10 Compiler extension point 12

3.2 org.modelica.mdt.omc . 13
3.2.1 Communicating with OMC 13
3.2.2 Starting OMC . 13
3.2.3 OMC interactive API 13
3.2.4 OMC communication parser 14
3.2.5 Interfacing with the core plugin 14

1

3.3 org.modelica.mdt.ui . 15
3.3.1 Modelica development ui 15
3.3.2 Modelica projects browser 15
3.3.3 Opening elements in an editor 17
3.3.4 Wizards . 17
3.3.5 New project wizard . 17
3.3.6 New package wizard 19
3.3.7 New class wizard . 20

3.4 Error management . 21
3.4.1 Logging errors and warnings 21
3.4.2 Displaying error messages 22
3.4.3 Error notification policy (move this to the discussions

chapter?) . 22
3.4.4 Compiler exceptions 23

3.5 Bug management . 24

4 Regression testing 25
4.1 Testing tools . 25
4.2 Tests plugin project . 25
4.3 Abbot tags . 26
4.4 Utility classes . 26
4.5 The untested code . 27
4.6 Tests for known bugs . 27

5 Future work 28
5.1 Filtering support . 28
5.2 Link With Editor . 28
5.3 Standard toolbar . 28
5.4 Source code navigation support 28
5.5 Quickfixes . 29
5.6 Multiple Modelica Compilers 29
5.7 Running a simulation . 29
5.8 Testing . 29

5.8.1 In general . 29
5.8.2 GUI recording . 30

5.9 Move Wizards code . 30
5.10 Split Up NewClassWizard . 30
5.11 Integrated debugger . 30

2

6 Discussion and Related work 31
6.1 Integrating the OpenModelica Compiler 31

6.1.1 The OMC access interface 31
6.1.2 Level of information on parsing 32
6.1.3 Distribution of MDT and OMC 33

6.2 Testing of GUI code . 34
6.3 Modelica compiler interface 35

7 Conclusions 36
7.1 Accomplishments . 36
7.2 What we deliver . 36

7.2.1 The plugins . 36
7.2.2 Documentation . 36
7.2.3 Source code . 37

3

1 Introduction

The creation of software is a complex and error prone task. To help the
programmers, tools have been developed that assists with the making of
software. A programmer needs many tools to develop software in an efficient
way, some of these are editors, compilers, and debuggers. To utilize all these
tools in a nice way, and to get a better workflow, the tools are integrated
into a so called Integrated Development Environment (IDE).

An IDE is a collection of development tools glued into one big program, so
that they can be reached easily. For example, if the programmer would like to
stop editing and start compiling a program, she could just press the Compile
button instead of exiting the editor and giving the compile command. This
compilation could even be automatic (e.g. when the user saves a file) and
immediately inform the programmer when an error has been typed. This will
hopefully save time and allow the programmer to focus on the problem she’s
trying to solve.

Two of the more popular IDE’s today are Visual Studio and Eclipse.
Visual Studio is Microsoft Software’s IDE, and is an IDE for C++, Visual
Basic, C#, and J#. As it is proprietary software, it’s not of much interest
to this thesis. Eclipse is, at least from the beginning, an IBM project that
later got released to the public as free software[3]. As of now, the Eclipse
Foundation manages the Eclipse project. Eclipse is an “IDE for everything
and nothing in particular”. However, it is shipped by default with a set of
plugins that has very good support for developing Java projects.

As Eclipse is a very good platform for creating even better IDE’s, we de-
veloped the Modelica Development Tooling with and for Eclipse. As Eclipse
has a plugin architecture where different parts are easily replacable, it’s pos-
sible to incrementally build a development environment.

MDT (the Modelica Development Tooling) is a collection of plugins for
Eclipse that provides an environment for working with Modelica projects.
MDT integrates with the OpenModelica Compiler to provide support for
various features, for example package and class browsing and code comple-
tion. These features will hopefully make it easier for the model designer to
create Modelica models.

1.1 Intended audience

The following report on the Modelica Development Tooling assumes that the
reader have some understanding of how plugins for Eclipse are implemented.
Familiarity with the Modelica and Java languages is recommended. Some
CORBA terminology is used towards the end of the report.

4

Contributing to Eclipse[16] is a good introduction on writing plugins for
Eclipse. A bit bulky but thorough work on the Modelica language is Pe-
ter Fritzson’s book[13]. Chapter two “A Quick Tour Of Modelica” is suffi-
cient reading for understanding this text. As far as the authors know, no
good books exists on CORBA.

1.2 Thesis contributions

This thesis gives an overview of the Modelica Development Tooling for Eclipse
that was developed at PELAB. As there were no real scientific breakthroughs
while doing this thesis, no scientific contributions are made available.

1.3 Thesis outline

The following is a short outline of the thesis:

Chapter 2 starts off with a short background for Modelica, Eclipse and the Open
Modelica Compiler.

Chapter 3 has a quite detailed description of the architecture of the Modelica
Development Tooling plugins.

Chapter 4 has a discussion about the testing framework and testing tools that
were used when developing MDT.

Chapter 5 contains some suggestions on future work.

Chapter 6 has discussions regarding the Open Modelica Compiler, the testing of
GUI code, and the Modelica Compiler interface.

Chapter 7 concludes this thesis by detailing what we’ve accomplished and what
we deliver.

5

2 Background

To get a grasp of what this thesis is about we’ll first have a brief introduction
to Modelica and Eclipse. We will also briefly discuss the OpenModelica Com-
piler, as it is an important component of the Modelica Development Tooling.

2.1 Modelica

Modelica[6][13] is an object-oriented programming language for modeling sys-
tems that can be described using mathematical equations. As systems in real
life can be described by equations, they can be simulated using Modelica.
Some of the most important features of Modelica are:

• Models in Modelica can be described using equations instead of algo-
rithms. This means that the flow of the data is not specified, which
leads to better model reuse.

• Multidomain modeling, meaning that you can mix components from
different domains such as electrical, mechanical, and biological. This
brings great flexibility as you can specifiy large systems that contains
parts from many different areas of physics.

• Modelica has a general class concept, which further simplifies the reuse
of code in models.

See the tutorial by Modelica Association[10] for an introduction to Mod-
elica model development.

2.2 Eclipse

Eclipse[2] is an open source framework for creating extensible integrated de-
velopment environments (IDEs). The integration simplifies development and
avoids disturbing the“flow”[12] that a programmer can attain when program-
ming.

By itself, Eclipse doesn’t provide alot of end-user functionality. The great-
ness of Eclipse is based on the plugins that are plugged in. The smallest unit
of the Eclipse platform is the plugin.

2.2.1 Eclipse Platform Architecture

At the core of Eclipse is the Eclipse Platform Runtime. The Runtime in
itself mostly provides the loading of external plugins. The Java Development

6

Tooling is for example a collection of plugins that are loaded into Eclipse when
they are requested. That Eclipse is in itself written in Java and comes with
the Java Development Tooling as default often leads newcomers to believe
that Eclipse is a Java IDE with plugin capabilites. It is in fact the other way
around, with Eclipse being just a base for plugins, and the Java Development
Tooling plugging into this base. See figure 1 on page 8.

To extend Eclipse, a set of new plugins must be created. A plugin is
created by extending a certain extension point in Eclipse. There are several
predefined extension points in Eclipse, and plugins can provide their own
extension points. This means that you can plug in plugins into other plugins.

An extension point can have several plugins attached, and what plugin
that will be used is determined by a property file. For example, the Modelica
Editor is loaded at the same time as the Java Editor is loaded. When a user
opens a Java file, the Java Editor will be used, based on a property in the
Java Editor extension. (In this case, it’s the file ending that determines what
editor that should be used.)

As the number of plugins in Eclipse can be very big, a plugin is not
actually loaded into memory before its contribution is directly requested by
the user. This design assures us that the memory impact will be as low as
possible while running Eclipse.

A user-friendly aspect of Eclipse is the Eclipse Update Manager which
allows you to install new plugins just by pointing Eclipse to a certain website.
This website is provided by the developers of the plugin that you may wish
to install. An update site is for example provided by the MDT Development
Team for easy installation of the latest version of MDT.

2.3 OpenModelica Compiler

The OpenModelica Compiler (OMC) is being developed at PELAB. It is a
part of an effort to produce a complete Modelica environment[7] for creating
and simulating Modelica models.

OMC keeps a representation of every model in memory so that they can
be queried interactively by the user. When defining a new model, it is sent
to OMC via the provided interactive API, see section 3.2 on page 13. This
interactive API is then used to provide MDT with information about Mod-
elica models and packages. This information is for example utilized in the
MDT interface for providing a tree view of packages and models.

7

Figure 1: Eclipse Platform Architecture

8

3 Architecture

The Modelica Development Tooling package is composed out of three sepa-
rate Eclipse plugins. These three plugins are org.modelica.mdt.core, org.mode-
lica.mdt.ui and org.modelica.mdt.omc. These plugins contributes respectively
core Modelica functionality, user interface and OpenModelica Compiler ac-
cess services. Together these plugins adds Modelica-specific functionality to
the Eclipse IDE and creates an environment for working on Modelica projects.

Figure 2: MDT Plugins Architecture

The omc plugin plugs in into the core plugin to provide compiler services.
The ui plugin uses the services provided by the core plugin. To fullfill some
requests the core plugin must employ services provided by the omc plugin.

3.1 org.modelica.mdt.core

The core plugin provides main functionality for MDT. It allows browsing
Modelica components hierarchies and querying a mapping to the source code.
It also provides a mechanism to track changes to components.

3.1.1 Component access layer

The classes and interfaces that provides access to the Modelica components
are defined in the org.modelica.mdt.core package. All client plugins should
only use the API defined in that package to access Modelica components.

9

The components contained in each project are made accessible by wrap-
ping the IProject object with an instance of the IModelicaProject class. To
obtain a wrapped versions of all projects in the workspace the method IMod-
elicaRoot.getProjects() should be used. To obtain an instance of the IModeli-
caRoot interface the static method ModelicaCore.getModelicaRoot() is avail-
able.

3.1.2 Modelica projects

IModelicaProject provides access to the wrapped version of its root folder via
the getRootFolder() method. The method returns an instance of the IMod-
elicaFolder interface. All Modelica resources, and other types of resources,
are contained in the root folder of their respective project.

3.1.3 Folders

IModelicaFolder is a wrapper for a regular folder represented by an instance
of IFolder. A Modelica folder can contain, besides other folders and plain
files, Modelica source code files and packages. Any file with the extension
mo in the file name is treated as a Modelica source code file.

The Modelica language specification defines a standard way to map a
Modelica package to a folder structure[14]. Any such folders are so called
folder packages and are treated as packages by IModelicaFolder.

Modelica source files are represented by the IModelicaFile interface, Mod-
elica packages are represented by implementations of the IModelicaClass
folder. The reason that there is no special interface type for a Modelica
package is due to the fact that Modelica packages are defined in the language
as regular classes of the special restriction type package.

3.1.4 Files

A Modelica source code file contains hierarchies of Modelica classes. The
list of references to top-level classes are provided by the method IModeli-
caFile.getChildren().

3.1.5 Classes

The Modelica language defines 7 restriction types of classes. These restric-
tions are model, function, record, connector, block, type and package. The
restriction type of a class defines a restriction on the structure of the class.
There is also a special restriction type called class which means that there

10

are no restrictions on the contents of the class. See a Modelica language
manual for more information on the restriction types.

Classes of all restriction types are represented by the IModelicaClass in-
terface. The method getRestrictionType() can be used to query for the re-
striction type of the class. A class can contain a myriad of Modelica elements,
however at this point only subclasses and components are made accessible.
Contents of a class are accessible via the getChildren() method, which returns
a list of top-level subclasses and components.

3.1.6 Components

A component in the Modelica language can be compared to a member vari-
able in a conventional object oriented programming language. Modelica de-
fines two levels of visibility of class components, public and protected. The
visibility affects how the components can be accessed outside of the class
definition. See [15] for more information on component visibility.

Components are represented by the IModelicaComponent interface. Cur-
rently only the visibily and name of a component can be accessed via the
getVisibility() and getElementName() methods.

3.1.7 Mapping to the source code

All interfaces that represent Modelica elements are derived from the common
grandparent IModelicaElement. This interface defines methods to query for
common attributes of Modelica elements, for example the element’s name via
getElementName().

IModelicaElement also defines methods that allow determining the source
code location where the element is defined. getResource() returns the resource
where the element is defined. This can either be a folder or a file based on
the type of the Modelica element. If the element is defined outside of the
workspace, for example a system library element, getResource() returns a
null value. When such information is available, the path to the source code
file can be obtained with the getFilePath() method.

For elements that are defined inside a file the method getLocation() re-
turns the region of the file where the element is defined. It should be noted
that currently, due to limitations in OMC, the region returned is the first
line of the definition rather than the complete definition.

3.1.8 Modelica Standard Library

The Modelica specification defines a standard library of packages. To provide
access to packages in the standard library, the method getStandardLibrary()

11

in the IModelicaRoot interface is defined. The method returns a list of top
level packages in the standard library. The exact list of packages returned is
determined by the current compiler plugin.

3.1.9 Tracking element changes

To allow tracking changes to Modelica elements, clients can register a lis-
tener. Such a listener must implement the IModelicaElementChangeListener
interface. IModelicaRoot.addModelicaElementChangeListener() can be used
to register a listener. Whenever clients wish to stop receiving notification on
element changes, the removeModelicaElementChangeListener() method can
be employed.

The method elementsChanged() on the listener will be invoked whenever
changes to the Modelica elements are detected and a list of changes are
passed along. Each change to an element is encoded as an instance of the
IModelicaElementChange interface. Such an object contains information on
the changes nature and the element that have been changed. The change
nature is one of added, removed or modified. For project elements there are
also changes of the type opened and closed defined. On change type added a
parent element of the newly added element is accessible via the getParent()
method.

It should be noted that unlike Eclipse resource deltas, an element change
list is a flat structure. No hierarchical information is made available.

3.1.10 Compiler extension point

The core plugin defines an extension point org.modelica.mdt.compiler. This
extension point is used by the core plugin to load the class that is used to
access a Modelica compiler. Currently the core plugin only accepts a single
plugin that extends the compiler point. If there is none or more than one
extension of the compiler extension point the core plugin returns an error to
the clients on any calls that require access to a Modelica compiler.

The extension point requires that the extender specifies a class that will
provide interface to the Modelica compiler. The specified class must imple-
ment the org.modelica.mdt.compiler.IModelicaCompiler interface. The core
plugin will create an instance of the specified class via its default constructor
and invoke the methods as defined in the interface to access the compiler.
See the source code documentation of the IModelicaCompiler interface and
org.modelica.mdt.compiler extension point documentation for details on im-
plementing a compiler plugin.

12

3.2 org.modelica.mdt.omc

The OMC plugin provides access to the OpenModelica Compiler (OMC) for
the core plugin. It does that by implementing the org.modelica.mdt.compiler
extension point. The class that extends the extension point is called OM-
CProxy. The plugin acts as a proxy and redirects all the requests to OMC
and translates back the replies for the core plugin.

3.2.1 Communicating with OMC

OMCProxy is the main class of org.modelica.mdt.omc. This class takes care of
starting, connecting to and communicating with OMC. To communicate with
OMC, a CORBA interface is utilized. This interface has a single function
that takes a String as argument and returns a String containing the OMC
reply. If OMC can’t be found when trying to contact it, it will have to be
started.

3.2.2 Starting OMC

If an OMC session cannot be found when communication with OMC is
needed, a new session will be started. This is handled by the startServer()
method in OMCProxy. This method uses the OPENMODELICAHOME en-
vironment variable to determine where the OMC executable can be found.

3.2.3 OMC interactive API

The interactive OMC API is entirely textual. This means that commands
must be formulated as strings, and returned strings must be parsed to be
able to get the actual returned information. The next subsection describes a
parser for parsing returned strings.

The API is called an interactive API as it can be used interactively by a
program (or a user) to query OMC for information about the contents of its
database of stored models.

By using the API you can load models into OMC and get information
about previously loaded models. This information is used by MDT for pro-
viding a range of features, for example to provide a tree view of packages
and models, code completion when typing in code and finding and reporting
errors found in models.

13

3.2.4 OMC communication parser

The OMC communication parser is quite simple. The returned string from
OMC either contains a list of objects, or a list of errors. These lists look a
bit different, but are quite easy to parse.

The list of objects is the most difficult to parse as there can be lists
within a list. This recursivity makes it hard to just split the string on some
given character or character sequence. Instead the parser tries to match up
parentheses and sending each substring recursively to the parser. The parsed
list is represented as a standard Java Vector. The method for parsing lists is
called parseList() and resides in the ModelicaParser class found in the core
plugin.

The list of errors are much easier to take apart as it’s just a newline-
separated list of errors in a specific format. Each error is easily parsed as
long as it follows the standard error format in OMC. It turns out that many
error messages from OMC don’t follow any format, and will therefore not be
parsed (and thereby generating an error). The error parser method is called
parseErrorString() and can be found in the OMCParser class in the omc
plugin.

3.2.5 Interfacing with the core plugin

To be able to get information to the core plugin about models, a few functions
exist in OMCProxy. These functions are mapped relatively directly to OMC
API function calls.

The method getClassNames() will return the names of classes and pack-
ages that are contained in a class or a package. It uses the OMC API function
call with the same name.

The method getRestrictionType() will ask OMC about what kind of re-
strictions a class has. A restriction can, for example, be class, model, package,
or function.

The method loadFileInteractive() takes a file as argument and tries to
load that into OMC. This method will return a list of classes and packages
in the file.

The method getElementLocation() will try to locate where in a file a class
is defined. This is for example used when clicking a classname in the package
browser that opens the editor with the correct file at the correct position.

The (predicate) method isPackage() simply asks OMC if a given class-
name is a package. This is a specialized version of the method getRestric-
tionType().

The method getElementsInfo() gets information about the elements that

14

are contained in a class. In a class, there can be both elements and anno-
tations, and this function returns both kinds as a long list. The types of
elements that can be contained in a class are classdef (definition of a class),
extends (what this class extends), import (what this class imports), and com-
ponent (a component is kind of a member variable). For all these kinds of
elements, the file and line number can be retreived. Alot more information
is available from this API function call, but are not used in MDT. See the
documentation contained in the OMC source tree for a longer explanation of
this and other API function calls.

3.3 org.modelica.mdt.ui

The ui plugin implements the graphical interface for working with Modelica
resources. The ui plugin uses the services provided by the core plugin. In a
sense the ui plugin extends the core plugin by adding a user interface to the
core Modelica services.

3.3.1 Modelica development ui

Most of the functionality provided by the ui plugin is grouped in the Modelica
perspective, see figure 3.

The Modelica perspective contains (a) the Modelica projects browser, (b)
the Modelica source code editor and (c) the problems view. The ui plugin
also provides wizards to create new Modelica projects, classes and packages.

3.3.2 Modelica projects browser

The ui plugin contributes a Modelica projects view. The view is largely
inspired by the Java package browser. The Modelica projects viewer allows
the user to browse projects, folders, packages, source code files and classes.
It also provides cognitive shortcuts to open the source code in the editor,
via the double click mechanism, and wizards to create new elements, via the
context menu.

The projects view displays a tree of projects in the workspace, basically
the same way that the Java package view does. The tree presents the hi-
erarchical structure provided by the core plugin graphically. By using the
mapping to the source code it enables a fast way to open the underlying
source code for reading and modifing in the Modelica text editor.

The code that implements the view is housed inside the org.modelica.mdt.ui.view
package. The project views code structure is largely architectured after the

15

Figure 3: Modelica Perspective

resource navigator view code. The class ProjectsView is the class that im-
plements the view part interface. It initializases the view and sets up the
listeners and actions to animate the view.

The ProjectsView class sets up a tree viewer. It configures the tree viewer
to use an instance of the ModelicaElementContentProvider class as a content
provider, and the standard instance of IModelicaRoot as the input source.
The labels and icons of the elements in the tree are provided by an instance
of WorkbenchLabelProvider from the org.eclipse.ui.model package.

The ModelicaElementContentProvider provides contents by simply expos-
ing the resource tree as presented by the core plugin via the IModelicaRoot
interface. The ModelicaElementContentProvider also updates the tree viewer
when the underlying Modelica elements changes. It does that by registering
itself as a Modelica element change listener with IModlicaRoot in its con-
structor.

The WorkbenchLabelProvider provides labels and icons for elements in the

16

tree by trying to convert them to IWorkbenchAdapter via the Eclipse adapter
mechanism, see [17] for more information. The ui plugin makes it possible
to convert Modelica elements by installing an instance of ModelicaElemen-
tAdapterFactory as an adapter factory. This is done in the Plugin.start()
method. When the WorkbenchLabelProvider tries to convert a Modelica el-
ement to IWorkbenchAdapter, an instance of ModelicaElementAdapter is re-
turned by the adapter factory. ModelicaElementAdapter implements a map-
ping between Modelica elements and text labels and icons for graphical rep-
resentation according to the definition of the IWorkbenchAdapter interface.

3.3.3 Opening elements in an editor

As noted earlier it is possible to open the source code of Modelica elements
directly from the projects view by invoking an open action, usually double
clicking on the element. This functionality is implemented by adding an
anonymous open listener on the projects tree viewer. This listener invokes
the method handleOpen(). The method retrieves the element that the open
action was invoked upon and forwards it to the openInEditor() method in
the EditorUtility class in the org.modelica.mdt.ui.editor package.

openInEditor() handles the details of opening an element in a correct
editor. Non-Modelica elements are opened in their respective default editor.
When a request is made to open a Modelica element, the method tries to
determine the source file and region in the file where the element is defined.
On success the file is opened and the region is sharklighted.

It should be noted that there is a separate double click listener registered
on the Modelica projects tree viewer, an instance of the class ProjectsView-
DoubleClickAction. However this listener only adds behaviour to the tree
where some elements expand and collapse on double click. Do not confuse it
with the open action listener!

3.3.4 Wizards

The wizards that the ui plugin contributes are implemented in the org.mode-
lica.mdt.ui.wizards package. The wizards are made accessible to the user
via Eclipse’s standard wizards access points, such as the main menu and the
context menu in Modelica projects view.

3.3.5 New project wizard

The wizard is implemented by the NewProjectWizard class. The class is
mostly a wrapper around the inner class NewProjectPage and ModelicaCore’s
createProject() method. NewProjectPage implements the first and only page

17

of the wizard. This page contains all the widgets for entering information on
the new project. The NewProjectPage also implements the logic that defines
when enough information is entered to be able to create a new project. It
also implements checks so that entered information is valid, e.g. that the
projects name is unique. When NewProjectPage contains valid information
of the right amount, the “Finish” button is enabled.

The method performFinish() in NewProjectWizard class handles the sit-
uations where the user decides to go ahead and click on the finish button.
It extracts the information from the NewProjectPage widgets and forwards
it to the ModelicaCore.createProject() method. The createProject() method
handles all the details of creating a Modelica project in the workspace.

Figure 4: New Modelica Project Wizard

18

3.3.6 New package wizard

The new package wizard is implemented by the NewPackageWizard class.
It contains two inner classes, NewPackagePage and PackageCreator. The
NewPackagePage implements the only page present in the wizards. The page
contains widgets for entering information on the new, soon to be created,
Modelica package.

Figure 5: New Modelica Package Wizard

When the wizard is created by the platform, the current selection is passed
along. This selection is forwarded to the NewPackagePage. If a single Mod-
elica element or file system resource is selected, NewPackagePage tries to
determine the path of the innermost folder that contains that element. This
path is used as a default value in the source folder field.

When the finish button is clicked, information from the fields are har-
vested and fed to a new instance of the inner class PackageCreator. This
object is run in a separate thread to avoid blocking the UI queue thread.

19

PackageCreator creates the new folder for the package, it also creates a pack-
age.mo file inside that folder with proper definitions.

3.3.7 New class wizard

The wizard is implemented by the NewClassWizard class. The class is a 500
lines long jungle, hope you did not forget your machetes! Figure 6 displays
the new class wizard. The inner class NewClassPage implements the wizards
only page. The wizard allows the user to select (a) the restriction type of
the class to be created. Based on the restriction type the wizard enables a
set of (b) modifiers on the class. For example for a class of restriction type
function, the user can select if it will have an external body. Based on the
restriction type and modifiers selected, the wizard generates the source code.

Figure 6: New Modelica Class Wizard

The logic for enabling the modifiers checkboxes is implemented in the
NewClassPage.restrictionTypeChanged(). The method is invoked from an

20

anonymous listener on the (a) restriction type widget.
The new class wizard implements the same functionality as the new pack-

age wizard, where the current selection is used to determine the default value
for the source folder field. Possibly the code should be merged to some ab-
stract class.

The code generation is launched from the NewClassWizard.performFinish()
method when the user clicks on the finish button. The method gathers in-
formation from the widgets and passes it along to the doFinish() method as
arguments. doFinish() is run in a separate thread to avoid blocking the UI
thread. Contents of the new source code file are generated by the generate-
ClassContents() method, which doFinish() invokes. doFinish() then creates
the file in the specified source folder and writes the generated source code
there.

3.4 Error management

The are two primary sources of errors in MDT, the operation on the file
system and the Modelica compiler. When designing the code that handles
the error conditions important design goals must be kept in mind. The
environment should fail gracefully. The user must be notified of the error
condition and, most importantly, user created data must not be lost. It is
also important to make errors traceable to aid troubleshooting. See also [18]
for a discussion on error management in Eclipse plugins.

The general design pattern on error management in MDT is to forward
the error condition to the client. On errors in the omc plugin, generally an
exception of the subtype of org.modelica.mdt.compiler.CompilerException is
thrown. This exception is then forwarded via the core plugin to the client,
i.e. the ui plugin. When the core plugin interacts with the file system,
or some other eclipse runtime services, errors are signalled by throwing the
org.eclipse.core.runtime.CoreException exception. This exception is gener-
ally forwarded to the invoking client.

When the error exceptions reaches the ui plugin we tried to follow the
philosophy outlined in [18]. We display errors to the user whenever it is clear
it was triggered by some specific user action. In all cases the errors are logged
in the Eclipse system log. The code to display errors to the user and write
errors to the log is contained in the org.modelica.mdt.ErrorManager class.

3.4.1 Logging errors and warnings

In some situations it is not appropriate to show an error message to the
user. However it can become tricky to troubleshoot problems if occurred

21

errors never leave a visible trace. In such situations it is appropriate to log
the error to the problems log. It’s also possible to write more detailed and
more technically formulated error messages, because the average users is not
expected to read the problems log. The ErrorManager class provides logging
facilities in such situations.

3.4.2 Displaying error messages

Whenever the decision is to notify the user about the error, the meth-
ods showCompilerError() or showCoreError() in the ErrorManager class are
called. The method called depends on the type of the exception caught.
Subtypes of the CompilerException class are handled by the showCompil-
erError() method and subtypes of CoreException by the showCoreError()
method.

The showCompilerError() and showCoreError() methods logs the errors,
formulates the error message and displays the message to the user. Both the
error message and the log message are formulated by using the type of the
exception and any extra information on the error which may be embedded
in the exception object. These methods also implements the logic of error
notification policy.

3.4.3 Error notification policy (move this to the discussions chap-
ter?)

Displaying the error messages to the user presents an interesting usability
dilemma. On one hand the user should not be bombarded with error dialogs.
For example while expanding the Modelica node in the standard library sub
tree in the projects view, the showCompilerError() can be invoked one time
for each child under the node if an error condition occures. Depending on
the version of the standard library it can be more then 10 times under less
than a second. On the other hand the plugin should not fail silently, the user
must understand why the computer does not do what it was told to do.

We decided to resolve the dilemma by creating a policy where the number
of repeated identical error messages is limited. Errors signalled by excep-
tions of the types CommunicationException, ConnectException and Compi-
lerInstantiationException are only shown once. If such exceptions are for-
warded multiple times to the ErrorManager.showCompilerError() they are
only logged but no error dialog is shown to the user a second time. The ratio-
nale is that the MDT after such errors lacks access to the Modelica compiler,
which practically makes it useless. In the face of such errors only thing the
user would be interested in is to fix the compiler problem and restart Eclipse.

22

Errors signalled by exceptions of the types InvocationError and Unexpect-
edReplyException have a minimal timeout period between appearances. The
timeout is defined by a constant in the ErrorManager class and currently is
set to 1 minute. These types of errors are of a more transient nature and
MDT may as well be fully functional later on. In this case you are mostly
interested in avoiding seeing more than one error message from the cluster
generated by some specific action.

Errors signalled by the exception of some subtype of CoreException, which
are handled by the showCoreError() method, are always shown to the user
and noted in the problem log.

Maybe a more elegant solution can be found to the above outlined us-
ability dilemma. However the authors of this report were not able to arrive
at any other workable solutions.

3.4.4 Compiler exceptions

org.modelica.mdt.compiler.CompilerException is the super class of exceptions
that signal errors that occurs while communicating or trying to establish a
connection to the Modelica compiler.

<figur pa classhierarki av CompilerExceptions>

• CompilerInstantiationException

CompilerInstantiationException is thrown when there was an error in-
stantiating the compiler object specified by the plugin in the declara-
tion of the extension org.modlica.mdt.compiler. The exception object’s
method getProblemType() provides more details on the problem en-
countered. For example, if there was more than one extension defined
of the compiler extension point, this exception is thrown.

• ConnectException

ConnectException is thrown when there is an error while trying to
establish a connection to the Modelica compiler. This exception can
be thrown from many methods due to the fact that connecting to the
compiler is implemented lazily. For example if the omc plugin fails to
find the compiler binary this exception is thrown.

• CommunicationException

CommunicationException is thrown when there was problems sending
a request to the compiler or receiving the reply. This can happen for
example if the compiler crashes and dumps core on some particularly
nasty request.

23

• UnexpectedReplyException

The UnexpectedReplyException exception is thrown when the compiler
replies with something not quite expected. For example if the compiler
replies with a string instead of the expected integer. This is typically a
sign of compatibility problems with the compiler or bugs in the compiler
or the plugin code.

• InvocationError

InvocationError is thrown when the compiler returns an error reply
instead of the usual reply. This can happen for example if the method
IModelicaCompiler.loadSourceFile() is invoked with a path to a non-
existent file.

3.5 Bug management

Whenever the MDT code reaches an illegal internal state, for example a point
in the code that never should be executed then it is an almost certain sign
of a bug. To help troubleshooting, and to help expose less obvious bugs, all
such illegal internal states should be logged. The bugs are logged with the
ErrorManager.logBug() method. Description of the illegal state and location
in the source code where it was encountered are written to the log to help
tracking down the problem causing the bug. In all locations where it is
obvious that an illegal state is reached, a call to logBug() should be made.

24

4 Regression testing

We believe that scripted regression testing is an important tool to improve
both the user perceived quality of the product and the maintainability of the
code. By making it easy to run the full set of tests more bugs and other issues
can be detected early and fixed. A more systematic approach to testing also
allows to detect defects which otherwise would be easily overlooked and can
be hard to track down and reproduce. If there is a set of regression tests
that covers the code it also gives the developer more freedom to refactor
that code without fear of introducing new defects. This helps to improve
readability and maintainability of the code. For a longer discussion on the
role of scripted testing and refactoring in a development process see [11].

4.1 Testing tools

For running the regression tests on MDT two special Eclipse plugins are
required, the JUnit PDE plugin and the Abbot for Eclipse plugin.

JUnit PDE is a set of plugins that integrates the unit testing framework
JUnit into the Eclipse environment. It allows running the regression tests on
plugins from a special instance of Eclipse. The Eclipse SDK package, version
3.0 and later, include all required JUnit plugins to run MDT regression tests.
See [4] for more information on creating and running tests with the JUnit
framework.

Abbot for Eclipse is the plugin that allows writing scripted tests of GUI
components. The plugin mimics the real user input such as key presses and
mouse clicks and allows for realistic testing. The Abbot for Eclipse plugin
must be installed separately, see [5] for details on obtaining and installing it.

See section 6.2 for a discussion about GUI testing and the tools used in
the process.

4.2 Tests plugin project

The regression tests are all placed and run as a separate plugin project
org.modelica.mdt.test. All tests are implemented as JUnit test cases. Each
test class subclasses the junit.framework.TestCase class. The test class groups
the tests which are run in the same environment. The testing environment
is set up by the protected method setUp() in each test class. The method is
automatically called by the JUnit framework before running the test code.
The tests are implemented by the public methods with names that begin
with the lower case word test, e.g. testParseList().

25

If a test case class is written to perform test on a specific class a convention
exists to name the test case class after the tested class. For example if tests
are written for the class Foo then the test case class is named TestFoo. This
convention is intended to help navigate among tests.

4.3 Abbot tags

To direct simulated user input to the widgets in the regression tests you first
need to get a reference to the widget. Abbot provides multiple methods to
acquire such references. One way is to attach a so called tag on the widget
and ask Abbot to fetch the widget by tag. This method is by far the simplest
and most predictable. The downside is that it requires support in the code
that is tested. We believe that the time saved by being able to write test
code faster and with less hassle is worth the extra trouble of modifying the
tested code. The tagging of widgets is used whenever it is possible.

Abbot tags are attached to the widgets by setting an attribute “name” to
a specific string. Widgets attributes are set by calling the setData() method
on the widget object. A convenience method, MdtPlugin.tag(), is defined to
handle the details of tagging widgets. Widgets that regression tests need
access to are tagged by the code that creates them. The convention is to
define a constant named after the widget in the class that sets the tag. For
example the sourceFolder widget, in the new class wizard, have the tag con-
stant SOURCE FOLDER TAG. The constants value is set to the tags value
and referred by the regression test code.

In some cases test code need access to a widget created outside of the
MDT code. For example the tests on new class wizard need to simulate the
click on the wizard’s finish button. In such cases more elaborate code needs
to be written to acquire the widget reference. Typically such attributes of
the widget as caption, type or contents are used to find the desired widget.
For example to find the finish button, a widget of type push button with
caption ’Finish’ is searched for. Here you always run the risk of finding the
wrong button if there are two finish buttons displayed simultaneously.

4.4 Utility classes

The package org.modelica.mdt.test.util contains the helper classes for writing
regression tests. Common code is collected in classes defined in this package.

Many test cases require either a Modelica or a plain project or both to ex-
ist in the workspace. To avoid writing the same project creation code in mul-
tiple test case classes the class Area51Projects was created. The class contains

26

code to setup two fully populated projects. The Area51Projects.createPro-
jects() method creates a Modelica and a plain project. Projects are instan-
tiated with a rich hierarchy of elements suitable to run tests on. The class
keeps track of if it has already created the project and avoids trying to create
them a second time. This makes it safe to call the createProjects() method
multiple times from different test cases.

4.5 The untested code

Unfortunately writing regression test took often a backseat due to lack of
discipline and external pressures. In particular writing new GUI regression
tests was abandoned during the second half of the project. This means that
a lot of code is untested and a great deal of bugs undiscovered. See the
discussion on GUI testing in section 6.2 for more information. Also the fact
that for one line of regression tests code there exists two lines of the product
code suggests that there are large areas of untested code. Some of the known
white spots on the testing are the GUI code for the Modelica projects view
and the Modelica text editor. It is probably a good idea to otain some testing
coverage data to know for sure what areas need more testing.

4.6 Tests for known bugs

The ambition while working on MDT was that each time a new bug was
discovered to write a regression test that triggers that bug. That ambition has
largely gone unfulfilled. However it is noted in the docs/BUGS file whether
a regression test exists for the bugs listed there. Also, in the source code
comments for the regression tests, it is noted if the test triggers a particular
bug.

27

5 Future work

No program is complete, and MDT is no exception. Below is a list of different
parts of MDT that is either missing completely or need to be improved.

5.1 Filtering support

When working with many projects in MDT, you should be able to filter out
the projects that you’re not interested in at the moment. This should be
accomplished by defining filters in the Modelica Projects View. You should
for example be able to filter out libraries that are cluttering up the Modelica
Projects View.

5.2 Link With Editor

A standard feature in Eclipse is to link the project browser with the editor.
This means that when the user selects an editor window among the open
editor windows, that document is highlighted in the project browser.

5.3 Standard toolbar

The standard buttons Back, Forward, Up, Collapse All, Link With Edi-
tor, and the Filters/Working set menu should all be added to the Modelica
Projects View.

5.4 Source code navigation support

JDT allows users to browse the source code in the workspace. For example
to see the definition of a method the user can simply press CTRL and click
on the function’s name anywhere it is used in the source code. The file where
the method is defined will be opened in the text editor and the methods body
will be made visible.

We belive that this feature is a major time saver while working with any
source code of non-trivial size. Such feature should be implemented in MDT
sooner rather then later. To be able to do this, OMC must be able to provide
more information on the source code structure then it does now. See section
6.1.2 for a detailed discussion on the type information required.

28

5.5 Quickfixes

Quickfixe should be work like in JDT, where fixes to errors are proposed by
the plugin. Quickfixes is a really neat feature and speeds up the workflow
considerably. To be able to implement this feature OMC will have to report
more detailed error messages. Currently some kind of more structured error
management in OMC is being worked on. This can hopefully be used in the
future to implement quickfixes.

5.6 Multiple Modelica Compilers

If multiple Modelica Compiler plugins, i.e. plugins that extends the org.mode-
lica.mdt.compiler extension, are available, an error message is displayed and
nothing works until exactly one compiler is available. This should be changed
to allow the user to configure which compiler to use on a per project basis. It
will probably be a good idea to add a default compiler setting as well. This
is a rather far fetch feature as currently there is no pressing need to use any
other compiler besides OMC with MDT.

5.7 Running a simulation

To make a complete environment out of MDT, the simulation of models will
have to be supported. This can for example consist of a model setup wizard
(where one changes the starting values of the model), a report window with
simulation values, and a graphical plot of selected functions. Dymola is an
example of how a Modelica simulation environment can look like.

This additional functionality requires that the Modelica Compiler has
support for running simulations. OMC has this functionality, so one can add
support for simulating models by only modifiying the MDT source code.

5.8 Testing

5.8.1 In general

There are some things that are not tested at all, and these should of course
have tests written for them. Some of these are the Modelica Projects View
and the Modelica Editor. To get a complete picture of what tests are missing,
testing coverage data should be generated.

29

5.8.2 GUI recording

To create regression tests for the GUI some extra tools should be used. Us-
ing a GUI recording tool, rather than write the tests by hand via Abbot,
would save a lot of time and hassle. The TPTP suite of tools[1] should be
investigated for the presence of a GUI recorder.

5.9 Move Wizards code

The code that creates new packages, new classes, and new projects should be
moved from the wizard classes to org.modelica.mdt.code.internal and made
accessible through a public API in org.modelica.mdt.core.

5.10 Split Up NewClassWizard

The NewClassWizard is way too long and complicated. Maybe it should be
split into several files.

5.11 Integrated debugger

Another big thing that’s missing to make MDT a little more complete is an
integrated debugger. The authors are not sure how Modelica is debugged,
but they know there has been some work done on creating a stand alone
Modelica debugger. This debugger should be investigated before starting
work on an embedded debugger in MDT.

30

6 Discussion and Related work

6.1 Integrating the OpenModelica Compiler

As described earlier the org.modelica.mdt.omc plugin provides access to the
OpenModelica Compiler (OMC) for the core plugin. At this point MDT
mostly needs access to a Modelica parser. By parsing the contents of the
Modelica source code files it’s possible to implement a number of features.
For example browsing definitions in a source code file in projects view is
dependant on the ability to parse the file. In the future other OMC features
would have to be accessed. For example it would be nice to be able to
run simulations directly from the MDT environment. To do that the OMC
modules that handle the simulation needs to be accessed.

6.1.1 The OMC access interface

The OMC defines two quite similar ways to access its functionality. The
access is available through either a TCP socket or a CORBA-defined inter-
face. We have chosen to use the CORBA interface as described earlier in the
Architecture chapter. However there exists some problems with the way that
the interface is designed.

The IDL-defined interface only consists of one function, sendExpression(),
which takes one argument of type string. The function returns a string as
well. All communication with OMC is done by sending special text messages
via the sendExpression() function and parsing the reply, see the description
earlier in this report for details on communicating with OMC.

Here a custom text based protocol, on top of CORBAs provided facilities,
is defined to access the compiler. For example to retrieve the contents of
the “Modelica” package the following actions need to take place. A text
expression for querying of class contents must be formulated and passed on to
the sendExpression() CORBA stub. The stub code marshals the expression
into the wire format and sends it over to the server stub function in the OMC.
The server stub unmarshalls the received expression to a string and invokes
the local implementation of sendExpression(). Now OMC needs to parse the
received expression before it knows what to do. After the service is performed
the reply text must be constructed and sent over the CORBA stack. Once
again the reply is marshalled, sent over the wire protocol, unmarshalled and
handed over to the MDT code. Now the reply must be parsed to retrieve the
contents of the “Modelica” package.

This means that in addition to the CORBA provided marshalling layer a
hand written layer needs to be created both in MDT and in OMC. Creating

31

a custom marshalling layer has a number of drawbacks. First it takes time to
write, debug and maintain the marshalling code. It adds extra complexity to
the code base, and that’s never a good idea, especially when undergraduate
students are involved. Also the extra layer consumes additional computing
resources such as processor time and volatile storage.

The reason the text based protocol exists is to allow accessing the OMC
via a TCP socket. A TCP socket protocol does not define a marshalling layer
and thus nessesesestats a custom defined layer. The same text protocol is
used for both socket and CORBA based access interfaces.

We think that it is a mistake to provide both access interfaces to OMC.
Right now all the drawbacks of both socket and CORBA interfaces are
present but none of the advantages. You need a custom design marshalling
layer to support the socket layer. However you also have drawback of the over-
head and the extra hassle it means to have your code depend on a CORBA
package.

Our recommendation on future development of OMC is to drop one of
the interfaces. If the support for the socket interface is dropped, the full IDL
interface can be defined and enjoy the wonders of an automatic marshalling
layer. If the support for CORBA interface is dropped the dependency on the
CORBA package will be eliminated and the overhead of double marshalling
layers avoided.

Of course, dropped support of one of the interfaces means that back-
ward compatibility will be broken. This would require some work on OMC
clients that where using the deprecated protocol. This must be taken into
consideration before removing support.

6.1.2 Level of information on parsing

The amount of information the OMC parser provides is not sufficient to im-
plement some features that are desirable to have available in MDT. Features
such as refactoring, code navigation directly from the text editor, quickfixes
suggestions and others requires to have access to quite detailed information
on the source code. Basically you need access to the abstract syntax tree
in many cases. Many times you need to know the tokens that are present
in the some text area. The type and start and end of the token are needed
information. Some work in this area has been discussed among the OMC
developers team, and will hopefully be performed in the foreseeable future.
Also see section 5 on which possible feature would require what type of extra
information from the OMC.

Also, error reporting from the parsing phase should be come more stan-
dardized. To implement quickfixes, suggestions in MDT the error messages

32

should contain such information as severity of the error, type of error, the
area in source code where this error is found and so on.

The work on redesigning the error reporting facilities of OMC is done as
this report is written. With some luck this section will be obsolete by the
time you read this.

6.1.3 Distribution of MDT and OMC

Currently setting up a fully functional MDT environment is quite a lot of
hassle. You need to obtain and install the OpenModelica Compiler package.
You need to obtain and install the Eclipse SDK package, and finally you need
to instruct Eclipse to download the MDT feature from the update site. The
amount of trouble required probably scares away a number of potential users.
There is at least two ways to streamline the process a bit.

One possibility is to create a single package that bundles OMC, Eclipse
and MDT in one single swoop. This type of package would be of interest
to users looking for a complete Modelica development environment. The big
downside of this solution is the size of the package, which would be at least a
couple of hundreds megabytes. Also users who are already using some other
third party Eclipse plugins would not like this solution. They would be faced
with the alternative of either having two copies of Eclipse installed or trying
to merge the two provided distributions by hand.

Another solution would be to create a special Eclipse plugin that would
contain the OMC native binary. Such a plugin would be included in the
MDT feature. Then setting up the MDT environment would be a two step
process, install Eclipse and install the MDT feature. The downside of this
solution is that a separate OMC binary plugin for each supported platform is
needed. One for Windows, one for each flavour of Linux and so on. Another
drawback is that the users who would want to use OMC outside of the Eclipse
platform whould need to have two installation of the OMC binaries as the
MDT bundled binaries whould not be usable outside of Eclipse.

The above problems whould go away if OMC and MDT whould be dis-
tributed on a platform that already ships Eclipse, supports dependencies
among packages and provides package repositories. An example of such a
platform is Fedora Core 4 which is built around an rpm packaging system
and supports yum repositories. MDT could be destributed in the following
way. OMC is packaged as an rpm. MDT is packaged as a second rpm which
specifies a dependency on Eclipse and OMC packages. Both OMC and MDT
are uploaded to a yum repository, where Eclipse is is already bundled with
Fedora Core.

Installing a fully functional MDT would be as easy as typing ’yum install

33

mdt’. Unfortunately this is not possible at the moment because MDT would
not run on the free Java implementation bundled with Fedora. Distributing
the proprioretary Java implementation in a user friendly way with Fedora
Core is not possible due to licensing restrictions.

Anyway this report is not trying to solve the worlds packaging problems,
this is some one else’s work.

6.2 Testing of GUI code

Writing regression tests for the GUI code turned out to be quite a bit more
problematic then expected.

The first problem was to find a library that provides hooks for simulating
user input for SWT. Information available on the Internet on how to do GUI
testing with SWT and in particular in the Eclipse environment is hard to
come by. There seems to exist two libraries, Abbot for Eclipse and TPTP[1].

We chose Abbot mostly because we did not manage to figure out for sure
that TPTP provides such functionality. As a matter of fact we are still not
quite sure, however we managed to secure a copy of a TPTP user manual.

Abbot basically lacks any sort of documentation besides the partial API
documentation and some bits of outdated tutorials and code examples. How-
ever, on the plus side, it’s not too hard to figure out how to use Abbot even
with the small scraps of information available. The API is pretty much
straight forward. The existing regression tests are probably useful illustra-
tions. Tests on wizards are good examples to look at.

Besides troubles with learning to use the Abbot library, writing GUI re-
gression tests turned out to be quite complex and time consuming work.
While doing GUI testing the threading model of the toolkit must be con-
sidered. There exists some rules on actions that must be done on and off
the thread that processes the GUI event queue, see [8] for more information.
Also, due to the threading model of SWT, some tests must run in multiple
threads which need to synchronize with each other.

Due to the complex nature of writing GUI tests and due to the fact that
the MDT development team lack solid understanding of threading issues at
hand, writing new GUI tests was halted during later stages of the project.
Our recommendation to the future MDT developers is to gain a solid under-
standing of the SWT and Eclipse threading model early in the project.

Writing the GUI tests by hand should probably be avoided. Probably
there exist some GUI recording tools that can be employed instead. Such a
tool can save a lot of time. We recommend to take a close look at the TPTP
project and consider migrating current regression tests to it. To stop using
Abbot is probably good idea. It would certainly be nice to remove all the

34

abbot widget tags, look for string constants who’s name ends with TAG in
GUI-classes.

6.3 Modelica compiler interface

The interface that the core plugin uses for accessing the Modelica compiler is
quite OMC-centric. The methods defined in the IModelicaCompiler interface
mirrors quite closely the functionality provided by OMC’s interactive API.
It relies heavily on the concept of a memory database of Modelica elements.
The interface assumes that elements are loaded into the compiler’s memory
from files and that the compiler later on can be queried on the contents of
the database.

The errors that can be signaled out by the interface also makes assump-
tions based on the way OMC works. For example the “unexpected reply”
error assumes that communication with the compiler is done via a text based
protocol.

All these assumptions makes it hard to add support for other Modelica
compilers. The interface should be reworked if support for some other com-
piler than OMC is needed. However, currently there is no need to support
any other compilers, so this task is not of pressing nature. Also making a
more general interface could be tricky and cause inefficient code.

35

7 Conclusions

7.1 Accomplishments

In the original thesis proposal, a complete IDE with refactoring and debug-
ging support should have been made. This has not been accomplished, but
what we’ve accomplished is hopefully a start for a complete IDE for Modelica
development.

MDT allows you to:

• Edit Modelica files with an editor that has syntax highlighting.

• Discover syntax errors in files that you’re editing.

• Browse the package and class hierarchies that your project contains.

• Browse the Modelica Standard Library and inspect the source code.

• Type code faster by utilizing code completion.

Many of these feature depend on the OpenModelica Compiler, and some
features that we didn’t implement (for example refactoring) depend on fea-
tures that are missing in OMC. See the discussion about the CORBA inter-
face in section 6.1.1.

7.2 What we deliver

As is always the case with the development of a relatively complex system,
alot of artifacts have been produced. Below is a little detail about the various
parts that we deliver.

7.2.1 The plugins

The three plugins (core, ui, omc) that we provide can be easily fetched by
using the provided update site[9]. You can visit the update site with a web
browser to get instructions on how to use the update site from Eclipse.

7.2.2 Documentation

We provide two kinds of documentation, the user manual and the develop-
ment documents. The user manual can be reached from within Eclipse when
MDT is loaded by simply selecting Help Contents from the menu item Help.
From the Help Contents page you can reach the Modelica Development User
Guide.

36

The development documents are located in the MDT repository on some
subversion server. The location of this repository is secret right now (i.e.
we’re not sure where it will be).

7.2.3 Source code

The source code of MDT is available in the MDT repository. As already
stated, we don’t know where it is. I mean, it’s a secret. Really.

37

References

[1] The eclipse test & performance tools platform website.
http://www.eclipse.org/tptp/.

[2] Eclipse website. http://www.eclipse.org.

[3] Free software definition. http://www.gnu.org/philosophy/free-sw.html.

[4] Junit website. http://www.junit.org/index.htm.

[5] Mdt hacking manual. located inside the MDT source code repository,
docs/HACKING.

[6] Modelica website. http://www.modelica.org.

[7] Openmodelica users guide. Included with the OpenModelica Compiler
package, http://www.ida.liu.se/~pelab/modelica/OpenModelica/.

[8] Swt threading issues. http://help.eclipse.org/help31/index.jsp

?topic=/org.eclipse.platform.doc.isv/guide/swt_threading.htm.

[9] Update site. http://www.ida.liu.se/~pelab/modelica/OpenModelica/MDT/.

[10] Modelica - a unified object-oriented language
for physical systems modeling, tutorial. 2000.
http://www.modelica.org/documents/ModelicaTutorial14.pdf.

[11] Kent Beck and Cynthia Anders. Extreme Programming Explained : Em-
brace Change. Addison-Wesley Professional, 2004.

[12] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience.
Harper Perennial, 1991.

[13] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. IEEE Press, 2004.

[14] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1, chapter 10.3.3.2. IEEE Press, 2004.

[15] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1, chapter 3.11.1. IEEE Press, 2004.

[16] Erich Gamma and Kent Beck. Contributing to Eclipse. Addison-Wesley,
2004.

38

[17] Erich Gamma and Kent Beck. Contributing to Eclipse, chapter 31 Core
Runtime - IAdaptable. Addison-Wesley, 2004.

[18] Erich Gamma and Kent Beck. Contributing to Eclipse, chapter 20 Ex-
ceptions Handling. Addison-Wesley, 2004.

39

