 85
iii

OpenModelica System Documentation
Preliminary Draft, 2006-05-14
for OpenModelica 1.4.0

Version 0.7, May 2006

Peter Fritzson
Peter Aronsson, Adrian Pop, Håkan Lundvall,
Bernhard Bachmann, David Broman, Anders Fernström,
Daniel Hedberg, Elmir Jagudin, Kaj Nyström,
Andreas Remar, Levon Saldamli, Anders Sandholm
Copyright by:

Programming Environment Laboratory – PELAB
Department of Computer and Information Science

Linköping University, Sweden

Copyright © 2002-2006, PELAB, Department of Computer and Information Science, Linköpings universitet.

All rights reserved.

This document is part of OpenModelica, www.ida.liu.se/projects/OpenModelica

 (Here using the new BSD license, see also http://www.opensource.org/licenses/bsd-license.php)

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

· Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

· Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

· Neither the name of Linköpings universitet nor the names of its contributors may be used to endorse or promote products derived from this software withoutspecific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.

IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Table of Contents
3Table of Contents

3Preface

3Chapter 1
Introduction

31.1
OpenModelica Environment Structure

31.2
OpenModelica Compiler Translation Stages

31.3
Simplified Overall Structure of the Compiler

31.4
Parsing and Abstract Syntax

31.5
Rewriting the AST into SCode

31.6
Code Instantiation

31.7
The inst_class and inst_element Functions

31.8
Output

3Chapter 2
Invoking the OpenModelica Compiler/Interpreter Subsystem

32.1
Command-Line Invokation of the Compiler/Interpreter

32.1.1
General Compiler Flags

32.1.2
Compiler Debug Trace Flags

32.2
The OpenModelica Client-Server Architecture

32.3
Client-Server Type-Checked Command API for Scripting

32.3.1
Examples

32.4
Client-Server Untyped High Performance API

32.4.1
Definitions

32.4.2
Example Calls

32.4.3
Untyped API Functions

32.4.3.1
ERROR Handling

32.4.4
Annotations

32.4.4.1
Variable Annotations

32.4.4.2
Connection Annotations

32.4.4.3
Flat records for Graphic Primitives

32.5
Discussion on Modelica Standardization of the Typed Command API

32.5.1
Naming conventions

32.5.2
Return type

32.5.3
Argument types

32.5.4
Set of API Functions

3Chapter 3
Detailed Overview of OpenModelica Modules

33.1
Detailed Interconnection Structure of Compiler Modules

33.2
OpenModelica Source Code Directory Structure

33.2.1
modelica/modeq/

33.2.2
modelica/modeq/runtime

33.2.3
modelica/testsuite

33.2.4
modelica/mosh

33.2.5
modelica/c_runtime – OpenModelica Run-time Libraries

33.2.5.1
libc_runtime.a

33.2.5.2
libsim.a

33.3
Short Overview of Compiler Modules

33.4
Descriptions of OpenModelica Modules

33.4.1
Absyn – Abstract Syntax

33.4.2
Algorithm – Data Types and Functions for Algorithm Sections

33.4.3
Builtin – Builtin Types and Variables

33.4.4
Ceval – Constant Evaluation of Expressions and Command Interpretation

33.4.5
ClassInf – Inference and Check of Class Restrictions

33.4.6
ClassLoader – Loading of Classes from $MODELICAPATH

33.4.7
Codegen – Generate C Code from DAE

33.4.8
Connect – Connection Set Management

33.4.9
Corba – Modelica Compiler Corba Communication Module

33.4.10
DAE – DAE Equation Management and Output

33.4.11
DAEEXT – External Utility Functions for DAE Management

33.4.12
DAELow – Lower Level DAE Using Sparse Matrises for BLT

33.4.13
Debug – Trace Printing Used for Debugging

33.4.14
Derive – Differentiation of Equations from DAELow

33.4.15
Dump – Abstract Syntax Unparsing/Printing

33.4.16
DumpGraphviz – Dump Info for Graph visualization of AST

33.4.17
Env – Environment Management

33.4.18
Exp – Expression Handling after Static Analysis

33.4.19
Graphviz – Graph Visualization from Textual Representation

33.4.20
Inst – Code Instantiation/Elaboration of Modelica Models

33.4.20.1
Overview:

33.4.20.2
Code Instantiation of a Class in an Environment

33.4.20.3
Inst_element_list & Removing Declare Before Use

33.4.20.4
The Inst_element Function

33.4.20.5
The Inst_var Function

33.4.20.6
Dependencies

33.4.21
Interactive – Model Management and Expression Evaluation

33.4.22
Lookup – Lookup of Classes, Variables, etc.

33.4.23
Main – The Main Program

33.4.24
Mod – Modification Handling

33.4.25
ModSim – Communication for Simulation, Plotting, etc.

33.4.26
ModUtil – Modelica Related Utility Functions

33.4.27
Parse – Parse Modelica or Commands into Abstract Syntax

33.4.28
Prefix – Handling Prefixes in Variable Names

33.4.29
Print – Buffered Printing to Files and Error Message Printing

33.4.30
RTOpts – Run-time Command Line Options

33.4.31
SCode – File explode.rml – Lower Level Intermediate Representation

33.4.32
SimCodegen – Generate Simulation Code for Solver

33.4.33
Socket – (Depreciated) OpenModelica Socket Communication Module

33.4.34
Static – Static Semantic Analysis of Expressions

33.4.35
System – System Calls and Utility Functions

33.4.36
TaskGraph – Building Task Graphs from Expressions and Systems of Equations

33.4.37
TaskGraphExt – The External Representation of Task Graphs

33.4.38
Types – Representation of Types and Type System Info

33.4.39
Util – General Utility Functions

33.4.40
Values – Representation of Evaluated Expression Values

33.4.41
VarTransform – Binary Tree Representation of Variable Transformations

3Index

Preface
This system documentation has been prepared to simplify further development of the OpenModelica compiler. It contains contributions from a number of developers.
Chapter 1

Introduction
This document is intended as system documentation for the OpenModelica environment, for the benefit of developers who are extending and improving OpenModelica. For information on how to use the OpenModelica environment, see the OpenModelica users guide.

This system documentation, version May 2006, primarily includes information about the OpenModelica compiler. Short chapters about the other subsystems in the OpenModelica environment are also included.

1.1 OpenModelica Environment Structure

The OpenModelica environment consists of several interconnected subsystems, as depicted in Figure 1‑1 below.

[image: image1.wmf]

Modelica

Compiler

Interactive

session handler

Execution

Graphical Model

Editor/Browser

Textual

Model Editor

Modelica

Debugger

Emacs

Editor/Browser

DrModelica

NoteBook

Model Editor

Eclipse Plugin

Editor/Browser

Figure 1‑1. The overall architecture of the OpenModelica environment. Arrows denote data and control flow. The interactive session handler receives commands and shows results from evaluating commands and expressions that are translated and executed. Several subsystems provide different forms of browsing and textual editing of Modelica code. The debugger currently provides debugging of an extended algorithmic subset of Modelica, and uses Emacs or Eclipse for display and positioning. The graphical model editor is not really part of OpenModelica but integrated into the system and available from MathCore Engineering AB without cost for academic usage.
As mentioned above, this version of the system documentation only includes the OpenModelica compilation subsystem, translating Modelica to C code. The compiler also includes a Modelica interpreter for interactive usage and for command and constant expression evaluation. The subsystem includes facilities for building simulation executables linked with selected numerical ODE or DAE solvers. Currently the default solver is DASSL.
1.2 OpenModelica Compiler Translation Stages

The Modelica translation process is schematically depicted in Figure 1‑2 below. Modelica source code (typically .mo files) input to the compiler is first translated to a so-called flat model. This phase includes type checking, performing all object-oriented operations such as inheritance, modifications etc., and fixing package inclusion and lookup as well as import statements. The flat model includes a set of equations declarations and functions, with all object-oriented structure removed apart from dot notation within names. This process is a partial instantiation of the model, called code instantiation or elaboration in subsequent sections.

The next two phases, the equation analyzer and equation optimizer, are necessary for compiling models containing equations. Finally, C code is generated which is fed through a C compiler to produce executable code.

[image: image2.wmf]

Modelica

Source Code

Translator

Analyzer

Optimizer

Code

Generator

C Compiler

Simulation

Modelica model

Flat Model

Sorted equations

Optimized sorted

equations

C Co

de

Executable

Figure 1‑2. Translation stages from Modelica code to executing simulation.
1.3 Simplified Overall Structure of the Compiler
The OpenModelica compiler is separated into a number of modules, to separate different stages of the translation, and to make it more manageable. The top level function is called main, and appears as follows in simplified form that emits flat Modelica (leaving out the code generation and symbolic equation manipulation):
function main

 input String f; // file name

algorithm

 ast := Parser.parse(f);

 scode1 := SCode.elaborate(ast);

 scode2 := Inst.elaborate(scode1);

 DAE.dump(scode2);

end main;
The simplified overall structure of the OpenModelica compiler is depicted in Figure 1‑3, showing the most important modules, some of which can be recognized from the above main function. The total system contains approximately 40 modules.

[image: image3.wmf]

SCode

/ex

plode

Lookup

Parse

DAELow

Inst

Ceval

Static

Absyn

SCode

DAE

(Env, name)

SCode.Class

Exp.Exp

Values.Value

SCode.Exp

(Exp.Exp,

 Types.Type)

(Env, name)

Main

CodeGen

SimCodeGen

C code

Dump

DAE

Flat Modelica

Figure 1‑3. Some module connections and data flows in the OpenModelica compiler. The parser generates abstract syntax (Absyn) which is converted to the simplified (SCode) intermediate form. The code instantiation module (Inst) calls Lookup to find a name in an environment. It also generates the DAE equation representation which is simplified by DAELow. The Ceval module performs compile-time or interactive expression evaluation and returns values. The Static module performs static semantics and type checking. The DAELow module performs BLT sorting and index reduction. The DAE module internally uses Exp.Exp, Types.Type and Algorithm.Algorithm; the SCode module internally uses Absyn.
1.4 Parsing and Abstract Syntax

The function Parser.parse is actually written in C, and calls the parser generated from a grammar by the ANTLR parser generator tool (ANTLR 1998). This parser builds an abstract syntax tree (AST) from the source file, using the AST data types in a MetaModelica module called Absyn. The parsing stage is not really part of the semantic description, but is of course necessary to build a real translator.

1.5 Rewriting the AST into SCode
The AST closely corresponds to the parse tree and keeps the structure of the source file. This has several disadvantages when it comes to translating the program, and especially if the translation rules should be easy to read for a human. For this reason a preparatory translation pass is introduced which translates the AST into an intermediate form, called SCode. Besides some minor simplifications the SCode structure dif​fers from the AST in the following respects:

· All variables are described separately. In the source and in the AST several variables in a class definition can be declared at once, as in Real x, y[17];. In the SCode this is represented as two unrelated declarations, as if it had been written Real x; Real y[17];.

· Class declaration sections. In a Modelica class declaration the public, protected, equation and algorithm sections may be included in any number and in any order, with an implicit public section first. In the SCode these sections are collected so that all public and protected sections are combined into one section, while keeping the order of the elements. The information about which elements were in a protected section is stored with the element itself.

One might have thought that more work could be done at this stage, like analyzing expression types and resolving names. But due to the nature of the Modelica language, the only way to know anything about how the names will be resolved dur​ing elaboration is to do a more or less full elaboration. It is possible to analyze a class declaration and find out what the parts of the declaration would mean if the class was to be elaborated as-is, but since it is possible to modify much of the class while elaborating it that analysis would not be of much use.

1.6 Code Instantiation

To be executed, classes in a model need to be instantiated, i.e., data objects are created according to the class declaration. There are two phases of instantiation:

· The symbolic, or compile time, phase of instantiation is usually called elaboration or code instantiation. No data objects are created during this phase. Instead the symbolic internal representation of the model to be executed/simulated is transformed, by performing inheritance operations, modification operations, aggregation operations, etc.

· The creation of the data object, usually called instantiation in ordinary object-oriented terminology. This can be done either at compile time or at run-time depending on the circumstances and choice of implementation.

The central part of the translation is the code instantiation or elaboration of the model. The convention is that the last model in the source file is elaborated, which means that the equations in that model declaration, and all its subcomponents, are computed and collected.

The elaboration of a class is done by looking at the class definition, elaborating all subcomponents and collecting all equations, functions, and algorithms. To accomplish this, the translator needs to keep track of the class context. The context includes the lexical scope of the class definition. This constitutes the environment which includes the variables and classes declared previously in the same scope as the current class, and its parent scope, and all enclosing scopes. The other part of the context is the current set of modifiers which modify things like parameter values or redeclare subcomponents.

 model M

 constant Real c = 5;

 model Foo

 parameter Real p = 3;

 Real x;

 equation

 x = p * sin(time) + c;

 end Foo;

 Foo f(p = 17);

 end M;

In the example above, elaborating the model M means elaborating its subcomponent f, which is of type Foo. While elaborating f the current environment is the parent environ​ment, which includes the constant c. The current set of mod​ifications is (p = 17), which means that the parameter p in the component f will be 17 rather than 3.

There are many semantic rules that takes care of this, but only a few are shown here. They are also somewhat simplified to focus on the central aspects.

1.7 The instClass and instElement Functions

The function instClass elaborates a class. It takes five arguments, the environment env, the set of mod​ifications mod, the prefix inPrefix which is used to build a globally unique name of the component in a hierarchical fashion, a collection of connection sets csets, and the class definition inScodeclass. It opens a new scope in the environment where all the names in this class will be stored, and then uses a function called instClassIn to do most of the work. Finally it generates equations from the connection sets col​lected while elaborating this class. The “result” of the function is the elaborated equations and some information about what was in the class. In the case of a function, regarded as a restricted class, the result is an algorithm section.
One of the most important functions is instElement, that elaborates an element of a class. An element can typically be a class definition, a variable or constant declaration, or an extends-clause. Below is shown only the rule in instElement for elaborating variable declarations.

The following are simplified versions of the instClass and instElement functions.

function instClass "Symbolic instantiation of a class"
 input Env inEnv;

 input Mod inMod;

 input Prefix inPrefix;

 input Connect.Sets inConnectsets;

 input Scode.Class inScodeclass;

 output list<DAE.Element> outDAEelements;

 output Connect.Sets outConnectSets;

 output Types.Type outType;

algorithm
 (outDAEelements, outConnectSets, outType) :=

 matchcontinue (inEnv,inMod,inPrefix,inConnectsets,inScodeclass)

 local

 Env env,env1; Mod mod; Prefix prefix;

 Connect.Sets connectSets,connectSets1;

 ... n,r; list<DAE.Element> dae1,dae2;
 case (env,mod,pre,connectSets, scodeClass as SCode.CLASS(n,_,r,_))
 equation

 env1 = Env.openScope(env);

 (dae1,_,connectSets1,ciState1,tys) = instClassIn(env1,mod,prefix,

 connectSets, scodeClass);

 dae2 = Connect.equations(connectSets1);

 dae = listAppend(dae1,dae2);

 ty = mktype(ciState1,tys);

 then (dae, {}, ty);

 end matchcontinue;

end instClass;

function instElement "Symbolic instantiation of an element of a class"
 input Env inEnv;

 input Mod inMod;

 input Prefix inPrefix;

 input Connect.Sets inConnectSets;

 input Scode.Element inScodeElement;

 output list<DAE.Element> outDAEelement;

 output Env outEnv;

 output Connect.Sets outConnectSets;

 output list<Types.Var> outTypesVar;

algorithm

 (outDAE,outEnv,outdConnectSets,outdTypesVar) :=
 matchcontinue (inEnv,inMod,inPrefix,inConnectSets,inScodeElement)

 local

 Env env,env1; Mod mods; Prefix pre;

 Connect.Sets csets,csets1;

 ... n, final, prot, attr, t, m;

 ...

 case (env,mods,pre,csets, SCode.COMPONENT(n,final,prot,attr,t,m))
 equation

 vn = Prefix.prefixCref(pre,Exp.CREF_IDENT(n,{}));
 (cl,classmod) = Lookup.lookupClass(env,t)
// Find the class definition
 mm = Mod.lookupModification(mods,n);
 mod = Mod.merge(classmod,mm); // Merge the modifications
 mod1 = Mod.merge(mod,m);
 pre1 = Prefix.prefixAdd(n,[],pre); // Extend the prefix
 (dae1,csets1,ty,st) =

 instClass(env,mod1,pre1,csets,cl) // Elaborate the variable
 eq = Mod.modEquation(mod1); // If the variable is declared with a default equation,

 binding = makeBinding (env,attr,eq,cl); // add it to the environment

 // with the variable.
 env1 = Env.extendFrame_v(env, // Add the variable binding to the
 Env.FRAMEVAR(n,attr,ty,binding)); // environment
 dae2 = instModEquation(env,pre,n,mod1); // Fetch the equation, if supplied
 dae = listAppend(dae1, dae2); // Concatenate the equation lists
 then (dae, env1,csets1, { (n,attr,ty) })
 ...
 end matchcontinue;

end instElement;
1.8 Output

The equations, functions, and variables found during elaboration (symbolic instantiation) are collected in a list of objects of type DAEcomp:
uniontype DAEcomp

 record VAR Exp.ComponentRef componentRef; VarKind varKind; end VAR;

 record EQUATION Exp exp1; Exp exp2; end EQUATION;
end DAEcomp;
As the final stage of translation, functions, equations, and algorithm sections in this list are converted to C code.

Chapter 2

Invoking omc – the OpenModelica Compiler/Interpreter Subsystem
The OpenModelica Compiler/Interpreter subsystem (omc) can be invoked in two ways:

· As a whole program, called at the operating-system level, e.g. as a command.

· As a server, called via a Corba client-server interface from client applications.
In the following we will describe these options in more detail.
2.1 Command-Line Invokation of the Compiler/Interpreter

The OpenModelica compilation subsystem is called omc (OpenModelica Compiler). The compiler can be given file arguments as specified below, and flags that are described in the subsequent sections.
omc file.mo
Return flat Modelica by code instantiating the last class in the file file.mo
omc file.mof
Put the flat Modelica produced by code instantiation of the last class within file.mo in the file named file.mof.
omc file.mos
Run the Modelica script file called file.mos.
2.1.1 General Compiler Flags
The following are general flags for uses not specifically related to debugging or tracing:
omc +s file.mo/.mof
Generate simulation code for the model last in file.mo or file.mof. The following files are generated: modelname.cpp, modelname.h, modelname_init.txt, modelname.makefile.
omc +q
Quietly run the compiler, no output to stdout.
omc +d=blt
Perform BLT transformation of the equations.
omc +d=interactive
Run the compiler in interactive mode with Socket communication. This functionality is depreciated and is replaced by the newer Corba communication module, but still useful in some cases for debugging communication. This flag only works under Linux and Cygwin.
omc +d=interactiveCorba
Run the compiler in interactive mode with Corba communication. This is the standard communication that is used for the interactive mode.
2.1.2 Compiler Debug Trace Flags

Run omc with a comma separated list of flags without spaces,

"omc +d=flg1,flg2,..."
Here flg1,flg2,... are one of the flag names in the leftmost column of the flag description below. The special flag named all turns on all flags.

A debug trace printing is turned on by giving a flag name to the print function, like:

Debug.fprint("li", "Lookup information:...")

If omc is run with the following:
 omc +d=foo,li,bar, ...
this line will appear on stdout, otherwise not. For backwards compatibility for debug prints not yet sorted out, the old debug print call:
Debug.print

has been changed to a call like the following:
Debug.fprint("olddebug",...)

Thus, if omc is run with the debug flag olddebug (or all), these messages will appear. The calls to Debug.print should eventually be changed to appropriately flagged calls.

Moreover, putting a "-" in front of a flag turns off that flag, i.e.:
omc d=all,-dump
 This will turn on all flags except dump.

Using Graphviz for visualization of abstract syntax trees, can be done by giving one of the graphviz flags, and redirect the output to a file. Then run "dot –Tps filename –o filename.ps" or "dotty filename".
The following is a short description of all available debug trace flags. There is less of a need for some of these flags now when the recently developed interactive debugger with a data structure viewer is available.
· All debug tracing

all

Turn on all debug tracing.

none

This flag has default value true if no flags are given.

· General

info

General information.
olddebug
Print messages sent to the old Debug.print
· Dump

parsedump
Dump the parse tree.
dump

Dump the absyn tree.

dumpgraphviz
Dump the absyn tree in graphviz format.
daedump
Dump the DAE in printed form.

daedumpgraphv
 Dump the DAE in graphviz format.
daedumpdebug
Dump the DAE in expression form.

dumptr

Dump trace.
beforefixmodout Dump the PDAE in expression form before moving the modification equations into the VAR declarations.
· Types

tf

Types and functions.

tytr

Type trace.

· Lookup

li

Lookup information.

lotr

Lookup trace.

locom

Lookup compare
.

· Static

sei

Information

setr

Trace

· SCode

ecd

Trace of elab_classdef.

· Instantiation

insttr

Trace of code instantiation.

· Codegen

cg

??

cgtr

Tracing matching rules

codegen
Code generation.
· Env

envprint
Dump the environment at each class instantiation.
envgraph
Same as envprint, but using graphviz.
expenvprint
Dump environment at equation elaboration.
expenvgraph
dump environment at equation elaboration.
2.2 The OpenModelica Client-Server Architecture

The OpenModelica client-server architecture is schematically depicted in Figure 2‑1, showing two typical clients: a graphic model editor and an interactive session handler for command interpretation.

[image: image4.wmf]

Parse

Client:

Eclipse

Plugin

Corba

Client: Mosh

Interactive

Session Handler

Server: Main

 Program

Including C

ompiler,

Interpreter

, etc.

Interactive

SCode

Inst

Ceval

plot

system

etc.

U

ntyped API

Typed Checked Command API

Client: Graphic

Model Editor

Figure 2‑1. Client-Server interconnection structure of the compiler/interpreter main program and interactive tool interfaces. Messages from the Corba interface are of two kinds. The first group consists of expressions or user commands which are evaluated by the Ceval module. The second group are declarations of classes, variables, etc., assignments, and client-server API calls that are handled via the Interactive module, which also stores information about interactively declared/assigned items at the top-level in an environment structure.
The SCode module simplifies the Absyn representation, public components are collected together, protected ones together, etc. The Interactive modul serves the untyped API, updates, searches, and keeps the abstract syntax representation. An environment structure is not kept/cached, but is built by Inst at each call. Call Inst for more exact instantion lookup in certain cases. The whole Absyn AST is converted into Scode when something is compiled, e.g. converting the whole standard library if something.
Commands or Modelica expressions are sent as text from the clients via the Corba interface, parsed, and divided into two groups by the main program:
· All kinds of declarations of classes, types, functions, constants, etc., as well as equations and assignment statements. Moreover, function calls to the untyped API also belong to this group – a function name is checked if it belongs to the API names. The Interactive module handles this group of declarations and untyped API commands.
· Expressions and type checked API commands, which are handled by the Ceval module.
The reason the untyped API calls are not passed via SCode and Inst to Ceval is that Ceval can only handle typed calls – the type is always computed and checked, whereas the untyped API prioritizes performance and typing flexibility. The Main module checks the name of a called function name to determine if it belongs to the untyped API, and should be routed to Interactive.
Moreover, the Interactive module maintains an environment of all interactively given declarations and assignments at the top-level, which is the reason such items need to be handled by the Interactive module.
2.3 Client-Server Type-Checked Command API for Scripting
The following are short summaries of typed-checked scripting commands/ interactive user commands for the OpenModelica environment.

The emphasis is on safety and type-checking of user commands rather than high performance run-time command interpretation as in the untyped command interface described in Section 2.4.
These commands are useful for loading and saving classes, reading and storing data, plotting of results, and various other tasks.

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and for the scripting function in question. In the following tables we briefly indicate the types or character of the formal parameters to the functions by the following notation:

· String typed argument, e.g. "hello", "myfile.mo".​

· TypeName – class, package or function name, e.g. MyClass, Modelica.Math.​

· VariableName – variable name, e.g. v1, v2, vars1[2].x, etc.
· Integer or Real typed argument, e.g. 35, 3.14, xintvariable.​

· options – optional parameters with named formal parameter passing.​

The following are brief descriptions of the most common scripting commands available in the OpenModelica environment.

	animate(className, options) (NotYetImplemented)
	Display a 3D visaulization of the latest simulation. Inputs: TypeName className; Outputs: Boolean res;

	cd(dir)
	Change directory. Inputs: String dir;
Outputs: Boolean res;

	cd()
	Return current working directory. Outputs: String res;

	checkModel(className)
(NotYetImplemented)
	Instantiate model, optimize equations, and report errors.
Inputs: TypeName className; Outputs: Boolean res;

	clear()
	Clears everything: symboltable and variables.
Outputs: Boolean res;

	clearClasses()
(NotYetImplemented)
	Clear all class definitions from symboltable.
Outputs: Boolean res;

	clearLog() (NotYetImplemented)
	Clear the log. Outputs: Boolean res;

	clearVariables()
	Clear all user defined variables. Outputs: Boolean res;

	closePlots()(NotYetImplemented)
	Close all plot windows. Outputs: Boolean res;

	getLog()(NotYetImplemented)
	Return log as a string. Outputs: String log;

	instantiateModel(className)
	Instantiate model, resulting in a .mof file of flattened Modelica. Inputs: TypeName className; Outputs: Boolean res;

	list(className)
	Print class definition. Inputs: TypeName className;
Outputs: String classDef;

	list()
	Print all loaded class definitions. Output: String classdefs;

	listVariables()
	Print user defined variables. Outputs: VariableName res;

	loadFile(fileName)
	Load models from file.
Inputs: String fileName Outputs: Boolean res;

	loadModel(className)
	Load the file corresponding to the class, using the Modelica class name-to-file-name mapping to locate the file.
Inputs: TypeName className Outputs: Boolean res;

	plot(variables, options)
	Plots vars, which is a vector of variable names.
Inputs: VariableName variables; String title; Boolean legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};

Real yrange[2] i.e. {ymin,ymax};
Outputs: Boolean res;

	plot(var, options)
	Plots variable with name var.
Inputs: VariableName var; String title; Boolean legend; Boolean gridLines;
Real xrange[2] i.e. {xmin,xmax};

Real yrange[2] i.e. {ymin,ymax};
Outputs: Boolean res;

	plotParametric(vars1,
vars2, options)

(partly implemented)
	Plot each pair of corresponding variables from the vectors of variables vars1, vars2 as a parametric plot.
Inputs: VariableName vars1[:]; VariableName vars2[size(variables1,1)]; String title; Boolean legend; Boolean gridLines; Real range[2,2]; Outputs: Boolean res;

	plotParametric(var1,
var2, options)

	Plot the variable var2 against var1 as a parametric plot.
Inputs: VariableName var1; VariableName var2; String title; Boolean legend; Boolean gridLines; Real range[2,2]; Outputs: Boolean res;

	plotVectors(v1, v2, options)

(NotYetImplemented)
	Plot vectors v1 and v2 as an x-y plot. Inputs: VariableName v1; VariableName v2; Outputs: Boolean res;

	readMatrix(fileName, matrixName)
(NotYetImplemented)
	Read a matrix from a file given filename and matrixname.
Inputs: String fileName; String matrixName;
Outputs: Boolean matrix[:,:];

	readMatrix(fileName, matrixName, nRows, nColumns)
(NotYetImplemented)
	Read a matrix from a file, given file name, matrix name, #rows and #columns. Inputs: String fileName;
String matrixName; int nRows; int nColumns;
Outputs: Real res[nRows,nColumns];

	readMatrixSize(fileName, matrixName)
(NotYetImplemented)
	Read the matrix dimension from a file given a matrix name. Inputs: String fileName; String matrixName;
Outputs: Integer sizes[2];

	readSimulationResult(
fileName, variables, size)
(NotYetImplemented)
	Reads the simulation result for a list of variables and returns a matrix of values (each column as a vector or values for a variable.) Size of result is also given as input. Inputs: String fileName; VariableName variables[:]; Integer size;
Outputs: Real res[size(variables,1),size)];

	readSimulationResultSize(
fileName)
(NotYetImplemented)
	Read the size of the trajectory vector from a file. Inputs: String fileName; Outputs: Integer size;

	runScript(fileName)
	Executes the script file given as argument.
Inputs: String fileName; Outputs: Boolean res;

	saveLog(fileName)
(NotYetImplemented)
	Save the log to a file.
Inputs: String fileName; Outputs: Boolean res;

	saveModel(fileName, className)
	Save class definition in a file. Inputs: String fileName; TypeName className Outputs: Boolean res;

	saveTotalModel(fileName, className)

(NotYetImplemented)
	Save total class definition into file of a class. Inputs: String fileName; TypeName className Outputs: Boolean res;

	simulate(className, options)
	Simulate model, optionally setting simulation values.
Inputs: TypeName className; Real startTime;
Real stopTime; Integer numberOfIntervals;
Real outputInterval; String method;
Real tolerance; Real fixedStepSize;
Outputs: SimulationResult simRes;

	system(fileName)
	Execute system command. Inputs: String fileName; Outputs: Integer res;

	translateModel(className)
(NotYetImplemented)
	Instantiate model, optimize equations, and generate code. Inputs: TypeName className; Outputs: SimulationObject res;

	writeMatrix(fileName, matrixName, matrix)
(NotYetImplemented)
	Write matrix to file given a matrix name and a matrix.
Inputs: String fileName; String matrixName; Real matrix[:,:]; Outputs: Boolean res;

2.3.1 Examples

The following session in OpenModelica illustrates the use of a few of the above-mentioned functions.
>> model test Real x; end test;

 Ok
>> s:=list(test);
>> s

"model test

 Real x;
equation

 der(x)=x;

end test;
"
>> instantiateModel(test)

"fclass test

Real x;

equation

 der(x) = x;

end test;

"
>> simulate(test)

record

 resultFile = "C:\OpenModelica1.2.1\test_res.plt"
 end record
>> a:=1:10

 {1,2,3,4,5,6,7,8,9,10}

>> a*2

 {2,4,6,8,10,12,14,16,18,20}

>> clearVariables()

 true

>> list(test)

"model test

 Real x;
equation

 der(x)=x;

end test;
"
>> clear()

 true

>> list()

 {}

The common combination of a simulation followed by a plot:

> simulate(mycircuit, stopTime=10.0);

> plot({R1.v});
2.4 Client-Server Untyped High Performance API
The following API is primarily designed for clients calling the OpenModelica compiler/interpreter via the Corba interface, but the functions can also be invoked directly as user commands and/or scripting commands. The API has the following general properties:

· Untyped, no type checking is performed. The reason is high performance, low overhead per call.
· All commands are sent as strings in Modelica syntax; all results are returned as strings.
· Polymorphic typed commands. Commands are internally parsed into Modelica Abstract syntax, but in a way that does not enforce uniform typing (analogous to what is allowed for annotations). For example, vectors such as {true, 3.14, "hello"} can be passed even though the elements have mixed element types, here (Boolean, Real, String), which is currently not allowed in the Modelica type system.
The API for interactive/incremental development consist of a set of Modelica functions in the Interactive module. Calls to these functions can be sent from clients to the interactive environment as plain text and parsed using an expression parser for Modelica. Calls to this API are parsed and routed from the Main module to the Interactive module if the called function name is in the set of names in this API. All API functions return strings, e.g. if the value true is returned, the text "true" will be sent back to the caller, but without the string quotes.

· When a function fails to perform its action the string "-1" is returned.

· All results from these functions are returned as strings (without string quotes).
The API can be used by human users when interactively building models, directly, or indirectly by using scripts, but also by for instance a model editor who wants to interact with the symbol table for adding/changing/removing models and components, etc.

(??Future extension: Also describe corresponding internal calls from within OpenModelica)
2.4.1 Definitions
An

Argument no. n, e.g. A1 is the first argument, A2 is the second, etc.
<ident>
Identifier, e.g. A or Modelica.
<string>
Modelica string, e.g. "Nisse" or "foo".

<expr>

Arbitrary Modelica expression..

<cref>

Class reference, i.e. the name of a class, e.g. Resistor.
2.4.2 Example Calls

Calls fulfill the normal Modelica function call syntax. For example:
saveModel("MyResistorFile.mo",MyResistor)
will save the model MyResistor into the file "MyResistorFile.mo".

For creating new models it is most practical to send a model declaration to the API, since the API also accepts Modelica declarations and Modelica expressions. For example, sending:

 model Foo end Foo;
will create an empty model named Foo, whereas sending:

 connector Port end Port;

will create a new empty connector class named Port.
2.4.3 Untyped API Functions
The following are brief descriptions of the untyped API functions available in the OpenModelica environment. API calls are decoded by evaluateGraphicalApi and evaluateGraphicalApi2 in the Interactive package.
	--- Source Files ---
	

	??getSourceFile (A1<string>)
	??

	??setSourceFile (A1<string>)
	??

	--- Environment Variables ---
	

	??getEnvironmentVar(A1<string>)
	??

	??setEnvironmentVar(A1<string>)
	??

	--- Classes and Models ---
	

	loadFile(A1<string>)
	Loads all models in the file. Also in typed API. Returns list of names of top level classes in the loaded files.

	??loadFileInteractiveQualified (A1<string>)
	Loads all models in the file. Also in typed API. Returns list of names of top level classes in the loaded files.

	??loadFileInteractive(A1<string>)
	??

	loadModel(A1<cref>)

	Loads the model (A1) by looking up the correct file to load in $MODELICAPATH. Loads all models in that file into the symbol table.

	saveModel(A1<string>,A2<cref>)
	Saves the model (A2) in a file given by a string (A1). This call is also in typed API.

	??createModel(A1<cref>, A2<cref>)
	??

	??newModel(A1<cref>, A2<cref>)
	??

	deleteClass(A1<cref>)
	Deletes the class from the symbol table.

	renameClass(A1<cref>, A2<cref>)
	Renames an already existing class with from_name A1 to to_name (A2). The rename is performed recursively in all already loaded models which reference the class A1.

	--- Class Attributes ---
	

	??getElementsInfo(A1<cref>)
	??

	??getParameterValue(A1<cref>, A2<cref>)
	??

	??setParameterValue(A1<cref>, A2<cref>)
	??

	??getParameterNames(A1<cref>)
	??

	??setClassComment(A1<cref>)
	??

	addClassAnnotation(A1<cref>, annotate=<expr>)
	Adds annotation given by A2(in the form annotate= classmod(...)) to the model definition referenced by A1. Should be used to add Icon Diagram and Documentation annotations.

	getIconAnnotation(A1<cref>)
	Returns the Icon Annotation of the class named by A1.

	getDiagramAnnotation(A1<cref>)
	Returns the Diagram annotation of the class named by A1. NOTE: Since the Diagram annotations can be found in base classes a partial code instantiation is performed that flattens the inheritance hierarchy in order to find all annotations.

	getPackages(A1<cref>)
	Returns the names of all Packages in a class/package named by A1 as a list, e.g.: {Electrical,Blocks,Mechanics, Constants,Math,SIunits}

	getPackages()
	Returns the names of all package definitions in the global scope.

	getClassNames(A1<cref>)
	Returns the names of all class defintions in a class/package.

	getClassNames()
	Returns the names of all class definitions in the global scope.

	??getClassNamesForSimulation()
	??

	??setClassNamesForSimulation()
	??

	??getClassAttributes(A1<cref>)
	??

	getClassRestriction(A1<cref>)
	Returns the kind of restricted class of <cref>, e.g. "model", "connector", "function", "package", etc.

	getClassInformation(A1<cref>)
	Returns a list of the following information about the class A1:

{"restriction","comment","filename.mo",{bool,bool,bool},{"readonly|writable",int,int,int,int}}

	--- Restricted Class Predicates
	

	isPrimitive(A1<cref>)
	Returns "true" if class is of primitive type, otherwise "false".

	isConnector(A1<cref>)
	Returns "true" if class is a connector, otherwise "false".

	isModel(A1<cref>)
	Returns "true" if class is a model, otherwise "false".

	isRecord(A1<cref>)
	Returns "true" if class is a record, otherwise "false".

	isBlock(A1<cref>)
	Returns "true" if class is a block, otherwise "false".

	isType(A1<cref>)
	Returns "true" if class is a type, otherwise "false".

	isFunction(A1<cref>)
	Returns "true" if class is a function, otherwise "false".

	isPackage(A1<cref>)
	Returns "true" if class is a package, otherwise "false".

	isClass(A1<cref>)
	Returns "true" if A1 is a class, otherwise "false".

	isParameter(A1<cref>)
	Returns "true" if A1 is a parameter, otherwise "false".

	isConstant(A1<cref>)
	Returns "true" if A1 is a constant, otherwise "false".

	isProtected(A1<cref>)
	Returns "true" if A1 is protected, otherwise "false".

	existClass(A1<cref)
	Returns "true" if class exists in symbolTable, otherwise "false".

	existModel(A1<cref>)
	Returns "true" if class A1 exists in symbol table and has restriction model, otherwise "false".

	existPackage(A1<cref>)
	Returns "true" if class A1 exists in symbol table and has restriction package, otherwise "false".

	--- Components ---
	

	getComponentCount(A1<cref>)
	Returns the number (as a string) of components in a class, e.g return "2" if there are 2 components.

	getComponents(A1<cref>)
	Returns a list of the component declarations within class A1:
{{Atype,varidA,"commentA"},{Btype,varidB,"commentB"}, {...}}

	??getComponentProperties(A1<cref>)
	??

	??setComponentProperties(A1<cref>)
	??

	getComponentAnnotations(A1<cref>)
	Returns a list {...} of all annotations of all components in A1, in the same order as the components, one annotation per component.

	getCrefInfo(A1<cref>)??
	?? get Component reference info?? Returns a list {...} ???.

	addComponent(A1<ident>,A2<cref>,
A3<cref>,annotate=<expr>)
	Adds a component with name (A1), type (A2), and class (A3) as arguments. Optional annotations are given with the named argument annotate.

	deleteComponent(A1<ident>,
A2<cref>)
	Deletes a component (A1) within a class (A2).

	updateComponent(A1<ident>,
A2<cref>,
A3<cref>,annotate=<expr>)
	Updates an already existing component with name (A1), type (A2), and class (A3) as arguments. Optional annotations are given with the named argument annotate.

	renameComponent(A1<cref>,
A2<ident>,
A3<ident>)
	Renames an already existing component with name A2 defined in a class with name (A1), to the new name (A3). The rename is performed recursively in all already loaded models which reference the component declared in class A2.

	getNthComponent(A1<cref>,A2<int>)
	Returns the belonging class, component name and type name of the nth component of a class, e.g. "A.B.C,R2,Resistor", where the first component is numbered 1.

	getNthComponentAnnotation(
A1<cref>,A2<int>)
	Returns the flattened annotation record of the nth component (A2) (the first is has no 1) within class/component A1. Consists of a comma separated string of 15 values, see Annotations in Section 2.4.4 below, e.g "false,10,30,..."

	getNthComponentModification(
A1<cref>,A2<int>)??
	Returns the modification of the nth component (A2) where the first has no 1) of class/component A1.

	??getComponentModifierValue(A1<cref>, A2<cref>)
	??

	??setComponentModifierValue(A1<cref>, A2<cref>)
	??

	??getComponentModifierNames(A1<cref>, A2<cref>)
	??

	--- Inheritance ---
	

	getInheritanceCount(A1<cref>)
	Returns the number (as a string) of inherited classes of a class.

	getNthInheritedClass(A1<cref>,
A2<int>)
	Returns the type name of the nth inherited class of a class. The first class has number 1.

	??getExtendsModifierNames(A1<cref>)
	??

	??getExtendsModifierValue(A1<cref>)
	??

	--- Connections ---
	

	getConnectionCount(A1<cref>)
	Returns the number (as a string) of connections in the model.

	getNthConnection(A1<cref>,
A2<int>)
	Returns the nth connection, as a comma separated pair of connectors, e.g. "R1.n,R2.p". The first has number 1.

	getNthConnectionAnnotation(
A1<cref>,A2<int>)

	Returns the nth connection annotation as comma separated list of values of a flattened record, see Annotations in Section 2.4.4 below.

	addConnection(A1<cref>,A2<cref>,
A3<cref>, annotate=<expr>)
	Adds connection connect(A1,A2) to model A3, with annotation given by the named argument annotate.

	updateConnection(A1<cref>,
A2<cref>,A3<cref>,
annotate=<expr>)
	Updates an already existing connection.

	deleteConnection(A1<cref>,
A2<cref>,A3<cref>)
	Deletes the connection connect(A1,A2) in class given by A3.

	--- Equations ---
	

	addEquation(A1<cref>,A2<expr>,
A3<expr>)(NotYetImplemented)
	Adds the equation A2=A3 to the model named by A1.

	getEquationCount(A1<cref>)

(NotYetImplemented)
	Returns the number of equations (as a string) in the model named A1. (This includes connections)

	getNthEquation(A1<cref>,A2<int>)

(NotYetImplemented)
	Returns the nth (A2) equation of the model named by A1. e.g. “der(x)=-1” or “connect(A.b,C.a)”. The first has number 1.

	deleteNthEquation(A1<cref>,
A2<int>)(NotYetImplemented)
	Deletes the nth (A2) equation in the model named by A1. The first has number 1.

	--- Connectors ---
	

	getConnectorCount(A1<cref>)
	Returns the number of connectors (as a string) of a class A1. NOTE: partial code instantiation of inheritance is performed before investigating the connector count, in order also to get the inherited connectors.

	getNthConnector(A1<cref>,A2<int>)
	Returns the name of the nth connector, e.g "n". The first connector has number 1.

	getNthConnectorIconAnnotation(
A1<cref>,A2<int>)
	Returns the nth connector icon layer annotation as comma separated list of values of a flat record, see Annotation below. NOTE: Since connectors can be inherited, a partial instantiation of the inheritance structure is performed. The first has number 1.

	getNthConnectorDiagramAnnotation(A1<cref>,A2<int>)

(NotYetImplemented)
	Returns the nth connector diagram layer annotation as comma separated list of values of a flat record, see Annotation below. NOTE: Since connectors can be inherited, a partial instantiation of the inheritance structure is performed. The first has number 1.

2.4.3.1 ERROR Handling

When an error occurs in any of the above functions, the string "-1" is returned.

2.4.4 Annotations

Annotations can occur for several kinds of Modelica constructs.

2.4.4.1 Variable Annotations
Variable annotations (i.e., component annotations) are modifications of the following (flattened) Modelica record:

record Placement

 Boolean visible = true;

 Real transformation.x=0;

 Real transformation.y=0;

 Real transformation.scale=1;

 Real transformation.aspectRatio=1;

 Boolean transformation.flipHorizontal=false;

 Boolean transformation.flipVertical=false;

 Real transformation.rotation=0;

 Real iconTransformation.x=0;

 Real iconTransformation.y=0;

 Real iconTransformation.scale=1;

 Real iconTransformation.aspectRatio=1;

 Boolean iconTransformation.flipHorizontal=false;

 Boolean iconTransformation.flipVertical=false;

 Real iconTransformation.rotation=0;

end Placement;
2.4.4.2 Connection Annotations

Connection annotations are modifications of the following (flattened) Modelica record:

record Line

 Real points[2][:];

 Integer color[3]={0,0,0};

 enumeration(None,Solid,Dash,Dot,DashDot,DashDotDot) pattern = Solid;

 Real thickness=0.25;

 enumeration(None,Open,Filled,Half) arrow[2] = {None, None};

 Real arrowSize=3.0;

 Boolean smooth=false;

end Line;
This is the Flat record Icon, used for Icon layer annotations

record Icon

 Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});

 GraphicItem[:] graphics;

end Icon;

The textual representation of this flat record is somewhat more complicated, since the graphics vector can conceptually contain different subclasses, like Line, Text, Rectangle, etc. To solve this, we will use record constructor functions as the expressions of these. For instance, the following annotation:

annotation (

Icon(coordinateSystem={{-10,-10}, {10,10}},

graphics={Rectangle(extent={{-10,-10}, {10,10}}),

Text({{-10,-10}, {10,10}}, textString="Icon")}));
will produce the following string representation of the flat record Icon:

{{{-10,10},{10,10}},{Rectangle(true,{0,0,0},{0,0,0}, LinePattern.Solid,FillPattern.None,0.25,BorderPattern.None,
{{-10,-10},{10,10}},0),Text({{-10,-10},{10,10}},textString="Icon")}}
The following is the flat record for the Diagram annotation:

record Diagram

 Real coordinateSystem.extent[2,2] = {{-10, -10}, {10, 10}});

 GraphicItem[:] graphics;

end Diagram;

The flat records string representation is identical to the flat record of the Icon annotation.

2.4.4.3 Flat records for Graphic Primitives
record Line

 Boolean visible = true;

 Real points[2,:];

 Integer color[3] = {0,0,0};

 LinePattern pattern = LinePattern.Solid;

 Real thickness = 0.25;

 Arrow arrow[2] = {Arrow.None, Arrow.None};

 Real arrowSize = 3.0;

 Boolean smooth = false;

end Line;

record Polygon

 Boolean visible = true;

 Integer lineColor[3]={0,0,0};

 Integer fillColor[3]={0,0,0};

 LinePattern pattern = LinePattern.Solid;

 FillPattern fillPattern = FillPattern.None;

 Real lineThickness = 0.25;

 Real points[2,:];

 Boolean smooth = false;

end Polygon;

record Rectangle

 Boolean visible=true;

 Integer lineColor[3]={0,0,0};

 Integer fillColor[3]={0,0,0};

 LinePattern pattern = LinePattern.Solid;

 FillPattern fillPattern = FillPattern.None;

 Real lineThickness = 0.25;

 BorderPattern borderPattern = BorderPattern.None;

 Real extent[2,2];

 Real radius;

end Rectangle;

record Ellipse

 Boolean visible = true;

 Integer lineColor[3]={0,0,0};

 Integer fillColor[3]={0,0,0};

 LinePattern pattern = LinePattern.Solid;

 FillPattern fillPattern = FillPattern.None;

 Real lineThickness = 0.25;

 Real extent[2,2];

end Ellipse;

record Text

 Boolean visible = true;

 Integer lineColor[3]={0,0,0};

 Integer fillColor[3]={0,0,0};

 LinePattern pattern = LinePattern.Solid;

 FillPattern fillPattern = FillPattern.None;

 Real lineThickness = 0.25;

 Real extent[2,2];

 String textString;

 Real fontSize;

 String fontName;

 TextStyle textStyle[:]; // Problem, fails to instantiate if

 // styles are given as modification

end Text;

record BitMap

 Boolean visible = true;

 Real extent[2,2];

 String fileName;

 String imageSource;

end BitMap;

2.5 Discussion on Modelica Standardization of the Typed Command API
An interactive function interface could be part of the Modelica specification or Rationale. In order to add this, the different implementations (OpenModelica, Dymola, and others) need to agree on a common API. This section presents some naming conventions and other API design issues that need to be taken into consideration when deciding on the standard API.

2.5.1 Naming conventions
Proposal: function names should begin with a Non-capital letters and have a Capital character for each new word in the name, e.g.

loadModel

openModelFile
2.5.2 Return type

There is a difference between the currently implementations. The OpenModelica untyped API returns strings, "OK", "-1", "false", "true", etc., whereas the typed OpenModelica command API and Dymola returns Boolean values, e.g true or false.

Proposal: All functions, not returning information, like for instance getModelName, should return a Boolean value. (??Note: This is not the final solution since we also need to handle failure indications for functions returning information, which can be done better when exception handling becomes available).
2.5.3 Argument types
There is also a difference between implementations regarding the type of the arguments of certain functions. For instance, Dymola uses strings to denote model and variable references, while OpenModelica uses model/variable references directly.

For example, loadModel("Resistor") in Dymola, but loadModel(Resistor) in OpenModelica.

One could also support both alternatives, since Modelica will probably have function overloading in the near future.

2.5.4 Set of API Functions
The major issue is of course which subset of functions to include, and what they should do.

Below is a table of Dymola and OpenModelica functions merged together. The table also contains a proposal for a possible standard.

 <s> == string

 <cr> == component reference

 [] == list constructor, e.g. [<s>] == vector of strings

	Dymola
	OpenModelica
	Description
	Proposal

	list()
	listVariables()
	List all user-defined variables.
	listVariables()

	listfunctions()
	-
	List builtin function names and descriptions.
	listFunctions()

	-
	list()
	List all loaded class definitions.
	list()

	-
	list(<cref>)
	List model definition of <cref>.
	list(<cref>) or
list(<string>)

	classDirectory()
	cd()
	Return current directory.
	currentDirectory()

	eraseClasses()
	clearClasses()
	Removes models.
	clearClasses()

	clear()
	clear()
	Removes all, including models and variables.
	clearAll()

	-
	clearVariables()
	Removes all user defined variables.
	clearVariables()

	-
	clearClasses()
	Removes all class definitions.
	clearClasses()

	openModel(<string>)
	loadFile(<string>)
	Load all definitions from file.
	loadFile(<string>)

	openModelFile(
<string>)
	loadModel (<cref>)
	Load file that contains model.
	loadModel(<cref>),
loadModel(<string>)

	saveTotalModel(
<string>,<string>)
	-
	Save total model definition of a model in a file.
	saveTotalModel(<string>,<cref>) or
saveTotalModel(<string>,<string>)

	-
	saveModel(<cref>,
<string>)
	Save model in a file.
	saveModel(<string>,<cref>) or
saveModel(<string>,<string>)

	-
	createModel(<cref>)
	Create new empty model.
	createModel(<cref>) or
createModel(<string>)

	eraseClasses(
{<string>})
	deleteModel(<cref>)
	Remove model(s) from symbol table.
	deleteModel(<cref>) or
deleteModel(<string>)

	instantiateModel(
<string>
	instantiateClass(
<cref>)
	Perform code instantiation of class.
	instantiateClass(<cref>) or

instantiateClass(<string>)

Chapter 3

Detailed Overview of OpenModelica Packages
This chapter gives overviews of all packages in the OpenModelica compiler/interpreter and server functionality, as well as the detailed interconnection structure between the modules.
3.1 Detailed Interconnection Structure of Compiler Packages
A fairly detailed view of the interconnection structure, i.e., the main data flows and and dependencies between the modules in the OpenModelica compiler, is depicted in Figure 3‑1 below. (??Note that there is a Word bug that arbitrarily changes the width of the arrows)

[image: image5.wmf]

SCode

/explode

Lookup

Parse

DAELow

Inst

Ceval

Static

Absyn

SCode

DAE

: Equations

Algorithms

(Env, name)

SCode.Class

Exp.Exp

Values.Valu

e

SCode.Exp

(Exp.Exp,

 Types.Type)

(Env, name)

Mod

Connect

Derive

CodeGen

VarTransform

ClassInf

Prefix

SimCodeGen

DAE

: Functions

Absyn

Data Type

Modules:

SCode

Types

Algorithm

DAE

Exp

DAE

EXT

Dump

Utility

Modules:

Debug

ModUtil

System

Print

RTOpts

Builtin

DAE

Low.DAELow

C code

DAE

,

substlist

DAE

Exp.Exp

Exp.Exp

ClassInf.Even

t

Exp.Ident

Prefix.Prefix

Types.Mod

SCode.Mod

Exp.Componentref

DAE

ClassInf.State

.mo

Main

Util

ClassLoader

Dump

DAE

Flat Modelica

Figure 3‑1. Module connections and data flows in the OpenModelica compiler.
One can see that there are three main kinds of modules:

· Function modules that perform a specified function, e.g. Lookup, code instantiation, etc.

· Data type modules that contain declarations of certain data types, e.g. Absyn that declares the abstract syntax.

· Utility modules that contain certain utility functions that can be called from any module, e.g. the Util module with list processing funtions.

Note that this functionality classification is not 100% clearcut, since certain modules performs several functions. For example, the SCode module primarily defines the lower-level SCode tree structure, but also transforms Absyn into SCode. The DAE module defines the DAE equation representation, but also has a few routines to emit equations via the Dump module.
We have the following approximate description:
· The Main program calls a number of modules, including the parser (Parse), SCode, etc.
· The parser generates abstract syntax (Absyn) which is converted to the simplified (SCode) intermediate form.
· The code instantiation module (Inst) is the most complex module, and calls many other modules. It calls Lookup to find a name in an environment, calls Prefix for analyzing prefixes in qualified variable designators (components), calls Mod for modifier analysis and Connect for connect equation analys. It also generates the DAE equation representation which is simplified by DAELow and fed to the SimCodeGen code generator for generating equation-based simulation code, or directly to CodeGen for compiling Modelica functions into C functions
· The Ceval module performs compile-time or interactive expression evaluation and returns values. The Static module performs static semantics and type checking.
· The DAELow module performs BLT sorting and index reduction. The DAE module internally uses Exp.Exp, Types.Type and Algorithm.Algorithm; the SCode module internally uses Absyn
· The Vartransform module called from DAELow performs variable substitution during the symbolic transformation phase (BLT and index reduction).
3.2 OpenModelica Source Code Directory Structure
The following is a short summary of the directory structure of the OpenModelica compiler and interactive subsystem.
3.2.1 OpenModelica/Compiler/

Contains all MetaModelica files of the compiler, listed in Section ??.

3.2.2 OpenModelica/Compiler/runtime

This directory contains runtime modules, both for the compiler and for interactive system and communication needs. Mostly written in C.
rtops.c

Accessing compiler options.
printimpl.c

Print routines, e.g. for debug tracing.
socketimpl.c

Phased out. Should not be used. Socket communication between clients and the OpenModelica main program.
corbaimpl.cpp
Corba communication between clients and the OpenModelica main program.

ptolemyio.cpp
IO routines from the Ptolemy system to store simulation data for plotting, etc.

systemimpl.c

Operating system calls.

daeext.cpp

C++ routines for external DAE bit vector operations, etc.
3.2.3 OpenModelica/testsuite

This directory contains the Modelica testsuite consisting two subdirectories mofiles and mosfiles. The mofiles directory contains more than 200 test models. The mosfiles directory contains a few Modelica script files consisting of commands according to the general command API.

3.2.4 OpenModelica/OMShell
Files for the OpenModelica interactive shell, called OMShell for OpenModelica Shell.
3.2.5 OpenModelica/c_runtime – OpenModelica Run-time Libraries
This directory contains files for the Modelica runtime environment. The runtime contains a number of C files, for which object code versions are are packaged in of two libraries, libc_runtime.a and libsim.a. We group the C files under the respective library, even though the files occur directly under the c_runtime directory.
3.2.5.1 libc_runtime.a

The libc_runtime is used for executing Modelica functions that has been generated C code for. It contains the following files.

boolean_array.*
How arrays of booleans are represented in C.

integer_array.*
How arrays of integers are represented in C.

real_array.*

How arrays of reals are represented in C.

string_array.*
How arrays of strings are represented in C.

index_spec.c
Keep track of dimensionsizes of arrays.

memory_pool.c
Memory allocation for local variables.

read_write.*

Reading and writing of data to file.

utility.c

Utility functions

3.2.5.2 libsim.a

The library libsim.a is the runtime library for simulations, it contains solvers and a main function for the simulation. The following files are included:

simulation_runtime.* Includes the main function, solver wrappers,etc.

daux.f

Auxiliary Fortran functions.
ddasrt.f

DDASRT solver.
ddassl.f

DASSL solver.
dlamch.f

Determine machine parameters for solvers.
dlinpk.f

Gaussian elimination routines, used by solvers.

lsame.f

LAPACK axuiliary routine LSAME.

Non-linear solver:
hybrd1.f

Non-linear solver with approximate jacobian.
hybrj.f

Non-linear solver with analythical jacobian.- alternative for non-linear solver.
fdjac1.f

Helper routines
enorm.f

Helper routines.

dpmpar.f

Helper routines

dogleg.f

Helper routines
3.3 Short Overview of Compiler Modules

The following is a list of the OpenModelica compiler modules with a very short description of their functionality. Chapter 3 describes these modules in more detail.

Absyn
Abstract Syntax

Algorithm
Data Types and Functions for Algorithm Sections

Builtin

Builtin Types and Variables

Ceval

Evaluation/interpretation of Expressions.
ClassInf

Inference and check of class restrictions for restricted classes.
ClassLoader
Loading of Classes from $MODELICAPATH

Codegen
Generate C Code from functions in DAE representation.
Connect

Connection Set Management

Corba

Modelica Compiler Corba Communication Module

DAE

DAE Equation Management and Output

DAEEXT
External Utility Functions for DAE Management

DAELow
Lower Level DAE Using Sparse Matrises for BLT

Debug

Trace Printing Used for Debugging

Derive

 Differentiation of Equations from DAELow

Dump

Abstract Syntax Unparsing/Printing

DumpGraphviz
Dump Info for Graph visualization of AST

Env

Environment Management

Exp

Typed Expressions after Static Analysis /*updated)
Graphviz
Graph Visualization from Textual Representation

Inst

Code Instantiation/Elaboration of Modelica Models

Interactive
Model management and expression evaluation – the function Interactive.evaluate. Keeps interactive symbol tables. Contains Graphic Model Editor API..
Lookup

Lookup of Classes, Variables, etc.

Main

The Main Program. Calls Interactive, the Parser, the Compiler, etc.
Mod

Modification Handling

ModSim
/*Depreciated, not used). Previously communication for Simulation, Plotting, etc.

ModUtil
Modelica Related Utility Functions

Parse

Parse Modelica or Commands into Abstract Syntax

Prefix

Handling Prefixes in Variable Names

Print

Buffered Printing to Files and Error Message Printing

RTOpts

Run-time Command Line Options

SCode

Simple Lower Level Intermediate Code Representation.

SimCodegen
Generate simulation code for solver from equations and algorithm sections in DAE.
Socket

(Partly Depreciated) OpenModelica Socket Communication Module

Static

Static Semantic Analysis of Expressions

System

System Calls and Utility Functions

TaskGraph
Building Task Graphs from Expressions and Systems of Equations. Optional module.

TaskGraphExt
External Representation of Task Graphs. Optional module.

Types

Representation of Types and Type System Info

Util

General Utility Functions

Values

Representation of Evaluated Expression Values

VarTransform
Binary Tree Representation of Variable Transformations
3.4 Descriptions of OpenModelica Compiler Modules

The following are more detailed descriptions of the OpenModelica modules.
3.4.1 Absyn – Abstract Syntax

This module defines the abstract syntax representation for Modelica in MetaModelica. It primarily contains datatypes for constructing the abstract syntax tree (AST), functions for building and altering datatypes and a few functions for printing the AST:
· Abstract Syntax Tree (Close to Modelica)

· Complete Modelica 2.2

· Including annotations and comments

· Primary AST for e.g. the Interactive module
· Model editor related representations (must use annotations)

· Functions
· A few small functions, only working on Absyn types, e.g.:
· pathToCref(Path) => ComponentRef
· joinPaths(Path, Path) => (Path)
· etc.
The constructors defined by the Absyn module are primarily used by the walker (Compiler/absyn_builder/walker.g) which takes an ANTLR internal syntax tree and converts it into an MetaModelica abstract syntax tree. When the AST has been built, it is normally used by the SCode module in order to build the SCode representation. It is also possible to send the AST to the unparser (Dump) in order to print it.

For details regarding the abstract syntax tree, check out the grammar in the Modelica language specification.

The following are the types and datatypes that are used to build the AST:
An identifier, for example a variable name:
 type Ident = String;
Programs, the top level construct:
A program is simply a list of class definitions declared at top level in the source file, combined with a within statement that indicates the hierarchical position of the program.
uniontype Program

 record PROGRAM

 list<Class> classes "List of classes" ;

 Within within_ "Within statement" ;

 end PROGRAM;

 record BEGIN_DEFINITION

 Path path "path for split definitions" ;

 Restriction restriction "Class restriction" ;

 Boolean partial_ "true if partial" ;

 Boolean encapsulated_ "true if encapsulated" ;

 end BEGIN_DEFINITION;

 record END_DEFINITION

 Ident name "name for split definitions" ;

 end END_DEFINITION;

 record COMP_DEFINITION

 ElementSpec element "element for split definitions" ;

 Option<Path> insertInto "insert into, Default: NONE" ;

 end COMP_DEFINITION;

 record IMPORT_DEFINITION

 ElementSpec importElementFor "For split definitions" ;

 Option<Path> insertInto "Insert into, Default: NONE" ;

 end IMPORT_DEFINITION;

end Program;

Within statements:
uniontype Within

 record WITHIN

 Path path;

 end WITHIN;

 record TOP end TOP;

end Within;
Info attribute:
Various pieces of information needed by the tools for debugging and browsing support.

uniontype Info "Various information needed for debugging and browsing"

 record INFO

 String fileName "fileName where the class is defined in" ;

 Boolean isReadOnly "isReadOnly : (true|false). Should be true for libraries" ;

 Integer lineNumberStart "lineNumberStart" ;

 Integer columnNumberStart "columnNumberStart" ;

 Integer lineNumberEnd "lineNumberEnd" ;

 Integer columnNumberEnd "columnNumberEnd" ;

 end INFO;

end Info;
Classes:
A class definition consists of a name, a flag to indicate if this class is declared as partial, the declared class restriction, and the body of the declaration.
uniontype Class

 record CLASS

 Ident name "Name";

 Boolean isPartial "Partial";

 Boolean isFinal "Final";

 Boolean isEncaps "Encapsulated";

 Restriction restriction "Restricion";

 ClassDef body "Body";

 Ident filename "Name of file the class is defined in";

 end CLASS;

end Class;

uniontype Class
 record CLASS

 Ident name;

 Boolean partial_ "true if partial" ;

 Boolean final_ "true if final" ;

 Boolean encapsulated_ "true if encapsulated" ;

 Restriction restricion "restricion" ;

 ClassDef body;

 Info info "Information: FileName the class is defined in +

 isReadOnly bool + start line no + start column no +

 end line no + end column no";

 end CLASS;

end Class;
ClassDef:
The ClassDef type contains the definition part of a class declaration. The definition is either explicit, with a list of parts (public, protected, equation, and algorithm), or it is a definition derived from another class or an enumeration type.

 For a derived type, the type contains the name of the derived class and an optional array dimension and a list of modifications.
uniontype ClassDef

 record PARTS

 list<ClassPart> classParts;

 Option<String> comment;

 end PARTS;

 record DERIVED

 Path path;

 Option<ArrayDim> arrayDim;

 ElementAttributes attributes;

 list<ElementArg> arguments;

 Option<Comment> comment;

 end DERIVED;

 record ENUMERATION

 EnumDef enumLiterals;

 Option<Comment> comment;

 end ENUMERATION;

 record OVERLOAD

 list<Path> functionNames;

 Option<Comment> comment;

 end OVERLOAD;

 record CLASS_EXTENDS

 Ident name "class to extend" ;

 list<ElementArg> arguments;

 Option<String> comment;

 list<ClassPart> parts;

 end CLASS_EXTENDS;

 record PDER

 Path functionName;

 list<Ident> vars "derived variables" ;

 end PDER;

end ClassDef;

EnumDef:

The definition of an enumeration is either a list of literals or a colon, :, which defines a supertype of all enumerations.

uniontype EnumDef

 record ENUMLITERALS

 list<EnumLiteral> enumLiterals "enumLiterals" ;

 end ENUMLITERALS;

 record ENUM_COLON end ENUM_COLON;

end EnumDef;

EnumLiteral:
An enumeration type contains a list of EnumLiteral, which is a name in an enumeration and an optional comment.

uniontype EnumLiteral

 record ENUMLITERAL

 Ident literal

 Option<Comment> comment

 end ENUMLITERAL;

end EnumLiteral;

ClassPart:
A class definition contains several parts. There are public and protected component declarations, type definitions and extends-clauses, collectively called elements. There are also equation sections and algorithm sections. The EXTERNAL part is used only by functions which can be declared as external C or FORTRAN functions.

uniontype ClassPart

 record PUBLIC
 list<ElementItem> contents;

 end PUBLIC;

 record PROTECTED

 list<ElementItem> contents;

 end PROTECTED;

 record EQUATIONS

 list<EquationItem> contents;

 end EQUATIONS;

 record INITIALEQUATIONS

 list<EquationItem> contents;

 end INITIALEQUATIONS;

 record ALGORITHMS

 list<AlgorithmItem> contents;

 end ALGORITHMS;

 record INITIALALGORITHMS

 list<AlgorithmItem> contents;

 end INITIALALGORITHMS;

 record EXTERNAL

 ExternalDecl externalDecl;

 Option<Annotation> annotation_;

 end EXTERNAL;

end ClassPart;

ElementItem:
An element item is either an element or an annotation

uniontype ElementItem

 record ELEMENTITEM

 Element element;

 end ELEMENTITEM;

 record ANNOTATIONITEM

 Annotation annotation_;

 end ANNOTATIONITEM;

end ElementItem;
Element:
The basic element type in Modelica.
uniontype Element

 record ELEMENT

 Boolean final_;

 Option<RedeclareKeywords> redeclareKeywords "i.e., replaceable or redeclare" ;

 InnerOuter innerOuter " inner / outer" ;

 Ident name;

 ElementSpec specification " Actual element specification" ;

 Info info "The File name the class is defined in + line no + column no" ;

 Option<ConstrainClass> constrainClass "only valid for classdef and component";

 end ELEMENT;

 record TEXT

 Option<Ident> optName " optional name of text, e.g. model with syntax error.

 We need the name to be able to browse it..." ;

 String string;

 Info info;

 end TEXT;

end Element;

Constraining type:
Constraining type (i.e., not inheritance), specified using the extends keyword.
uniontype ConstrainClass

 record CONSTRAINCLASS

 ElementSpec elementSpec "must be extends" ;

 Option<Comment> comment;

 end CONSTRAINCLASS;

end ConstrainClass;
ElementSpec:

An element is something that occurs in a public or protected section in a class definition. There is one constructor in the ElementSpec type for each possible element type. There are class definitions (CLASSDEF), extends clauses (EXTENDS) and component declarations (COMPONENTS).

As an example, if the element extends TwoPin; appears in the source, it is represented in the AST as EXTENDS(IDENT("TwoPin"),{}).

uniontype ElementSpec

 record CLASSDEF

 Boolean replaceable_ "true if replaceable";

 Class class_;

 end CLASSDEF;

 record EXTENDS

 Path path;

 list<ElementArg> elementArg;

 end EXTENDS;

 record IMPORT

 Import import_;

 Option<Comment> comment;

 end IMPORT;

 record COMPONENTS

 ElementAttributes attributes;

 Path typeName;

 list<ComponentItem> components;

 end COMPONENTS;

end ElementSpec;

InnerOuter:

One of the keywords inner or outer or the combination inner outer can be given to reference an inner, outer or inner outer component. Thus there are four disjoint possibilities.

uniontype InnerOuter

 record INNER end INNER;

 record OUTER end OUTER;

 record INNEROUTER end INNEROUTER;

 record UNSPECIFIED end UNSPECIFIED;

end InnerOuter;
Import:
Import statements of different kinds.

uniontype Import

 record NAMED_IMPORT

 Ident name "name" ;

 Path path "path" ;

 end NAMED_IMPORT;

 record QUAL_IMPORT

 Path path "path" ;

 end QUAL_IMPORT;

 record UNQUAL_IMPORT

 Path path "path" ;

 end UNQUAL_IMPORT;

end Import;

ComponentItem:
Collection of component and an optional comment.
uniontype ComponentItem

 record COMPONENTITEM

 Component component;

 Option<ComponentCondition> condition;

 Option<Comment> comment;

 end COMPONENTITEM;

end ComponentItem;

ComponentCondition:

A ComponentItem can have a condition that must be fulfilled if the component should be instantiated.
type ComponentCondition = Exp;

Component:

A component represents some kind of Modelica entity (object or variable). Note that several component declarations can be grouped together in one ElementSpec by writing them in the same declaration in the source. However, this type contains the information specific to one component.
uniontype Component

 record COMPONENT

 Ident name "component name" ;

 ArrayDim arrayDim "Array dimensions, if any" ;

 Option<Modification> modification "Optional modification" ;

 end COMPONENT;

end Component;
EquationItem:
uniontype EquationItem

 record EQUATIONITEM

 Equation equation_;

 Option<Comment> comment;

 end EQUATIONITEM;

 record EQUATIONITEMANN

 Annotation annotation_;

 end EQUATIONITEMANN;

end EquationItem;

AlgorithmItem:

Info specific for an algorithm item.

uniontype AlgorithmItem

 record ALGORITHMITEM

 Algorithm algorithm_;

 Option<Comment> comment;

 end ALGORITHMITEM;

 record ALGORITHMITEMANN

 Annotation annotation_;

 end ALGORITHMITEMANN;

end AlgorithmItem;

Equation:
Information on one (kind) of equation, different constructors for different kinds of equations

uniontype Equation

 record EQ_IF

 Exp ifExp "Conditional expression" ;

 list<EquationItem> equationTrueItems "true branch" ;

 list<tuple<Exp, list<EquationItem>>> elseIfBranches;

 list<EquationItem> equationElseItems "Standard 2-side eqn" ;

 end EQ_IF;

 record EQ_EQUALS

 Exp leftSide;

 Exp rightSide "rightSide Connect eqn" ;

 end EQ_EQUALS;

 record EQ_CONNECT

 ComponentRef connector1;

 ComponentRef connector2;

 end EQ_CONNECT;

 record EQ_FOR

 Ident forVariable;

 Exp forExp;

 list<EquationItem> forEquations;

 end EQ_FOR;

 record EQ_WHEN_E

 Exp whenExp;

 list<EquationItem> whenEquations;

 list<tuple<Exp, list<EquationItem>>> elseWhenEquations;

 end EQ_WHEN_E;

 record EQ_NORETCALL

 Ident functionName;

 FunctionArgs functionArgs "fcalls without return value" ;

 end EQ_NORETCALL;

end Equation;

Algorithm:
The Algorithm type describes one algorithm statement in an algorithm section. It does not describe a whole algorithm. The reason this type is named like this is that the name of the grammar rule for algorithm statements is algorithm.

uniontype Algorithm

 record ALG_ASSIGN

 ComponentRef assignComponent;

 Exp value;

 end ALG_ASSIGN;

 record ALG_TUPLE_ASSIGN

 Exp tuple_;

 Exp value;

 end ALG_TUPLE_ASSIGN;

 record ALG_IF

 Exp ifExp;

 list<AlgorithmItem> trueBranch;

 list<tuple<Exp, list<AlgorithmItem>>> elseIfAlgorithmBranch;

 list<AlgorithmItem> elseBranch;

 end ALG_IF;

 record ALG_FOR

 Ident forVariable;

 Exp forStmt;

 list<AlgorithmItem> forBody;

 end ALG_FOR;

 record ALG_WHILE

 Exp whileStmt;

 list<AlgorithmItem> whileBody;

 end ALG_WHILE;

 record ALG_WHEN_A

 Exp whenStmt;

 list<AlgorithmItem> whenBody;

 list<tuple<Exp, list<AlgorithmItem>>> elseWhenAlgorithmBranch;

 end ALG_WHEN_A;

 record ALG_NORETCALL

 ComponentRef functionCall;

 FunctionArgs functionArgs " general fcalls without return value" ;

 end ALG_NORETCALL;

end Algorithm;
Modifications:
Modifications are described by the Modification type. There are two forms of modifications: redeclarations and component modifications.

uniontype Modification

 record CLASSMOD

 list<ElementArg> elementArgLst;

 Option<Exp> expOption;

 end CLASSMOD;

end Modification;

ElementArg:

Wrapper for things that modify elements, modifications and redeclarations.
uniontype ElementArg

 record MODIFICATION

 Boolean finalItem;

 Each each_;

 ComponentRef componentReg;

 Option<Modification> modification;

 Option<String> comment;

 end MODIFICATION;

 record REDECLARATION

 Boolean finalItem;

 RedeclareKeywords redeclareKeywords "keywords redeclare, or replaceable" ;

 Each each_;

 ElementSpec elementSpec;

 Option<ConstrainClass> constrainClass "class definition or declaration" ;

 end REDECLARATION;

end ElementArg;

RedeclareKeywords:

The keywords redeclare and replaceable can be given in three different combinations, each one by themselves or both combined.
uniontype RedeclareKeywords

 record REDECLARE end REDECLARE;
 record REPLACEABLE end REPLACEABLE;
 record REDECLARE_REPLACEABLE end REDECLARE_REPLACEABLE;
end RedeclareKeywords;

Each:

The Each attribute represented by the each keyword can be present in both MODIFICATION's and REDECLARATION's.

uniontype Each

 record EACH end EACH;
 record NON_EACH end NON_EACH;
end Each;

ElementAttributes:
This represents component attributes which are properties of components which are applied by type prefixes. As an example, declaring a component as input Real x; will give the attributes ATTR({},false,VAR,INPUT).

uniontype ElementAttributes

 record ATTR

 Boolean flow_ "flow" ;

 Variability variability "variability ; parameter, constant etc." ;

 Direction direction "direction" ;

 ArrayDim arrayDim "arrayDim" ;

 end ATTR;

end ElementAttributes;

Variability:
Component/variable attribute variability:
uniontype Variability

 record VAR end VAR;

 record DISCRETE end DISCRETE;

 record PARAM end PARAM;

 record CONST end CONST;

end Variability;

Direction:
Component/variable attribute Direction.
uniontype Direction

 record INPUT end INPUT;

 record OUTPUT end OUTPUT;

 record BIDIR end BIDIR;

end Direction;

ArrayDim:

Array dimensions are specified by the type ArrayDim. Components in Modelica can be scalar or arrays with one or more dimensions. This datatype is used to indicate the dimensionality of a component or a type definition.
type ArrayDim = list<Subscript>;
Exp:
The Exp datatype is the container for representing a Modelica expression.

uniontype Exp

 record INTEGER

 Integer value;

 end INTEGER;

 record REAL

 Real value;

 end REAL;

 record CREF

 ComponentRef componentReg;

 end CREF;

 record STRING

 String value;

 end STRING;

 record BOOL

 Boolean value ;

 end BOOL;

 record BINARY "Binary operations, e.g. a*b, a+b, etc."

 Exp exp1;

 Operator op;

 Exp exp2;

 end BINARY;

 record UNARY "Unary operations, e.g. -(x)"

 Operator op;

 Exp exp;

 end UNARY;

 record LBINARY "Logical binary operations: and, or"

 Exp exp1;

 Operator op;

 Exp exp2;

 end LBINARY;

 record LUNARY "Logical unary operations: not"

 Operator op;

 Exp exp;

 end LUNARY;

 record RELATION "Relations, e.g. a >= 0"

 Exp exp1;

 Operator op;

 Exp exp2 ;

 end RELATION;

 record IFEXP "If expressions"

 Exp ifExp;

 Exp trueBranch;

 Exp elseBranch;

 list<tuple<Exp, Exp>> elseIfBranch ;

 end IFEXP;

 record CALL "Function calls"

 ComponentRef function_;

 FunctionArgs functionArgs ;

 end CALL;

 record ARRAY "Array construction using { } or array()"

 list<Exp> arrayExp ;

 end ARRAY;

 record MATRIX "Matrix construction using []"

 list<list<Exp>> matrix;

 end MATRIX;

 record RANGE "matrix Range expressions, e.g. 1:10 or 1:0.5:10"
 Exp start;

 Option<Exp> step;

 Exp stop;

 end RANGE;

 record TUPLE "Tuples used in function calls returning several values"
 list<Exp> expressions;

 end TUPLE;

 record END "Array access operator for last element, e.g. a[end]:=1;"
 end END;

 record CODE "Modelica AST Code constructors"
 Code code;

 end CODE;

end Exp;

Code:

The Code datatype is a proposed meta-programming extension of Modelica. It originates from the Code quoting mechanism, see paper in the Modelica’2003 conference.

uniontype Code

 record C_TYPENAME

 Path path;

 end C_TYPENAME;

 record C_VARIABLENAME

 ComponentRef componentRef;

 end C_VARIABLENAME;

 record C_EQUATIONSECTION

 Boolean boolean;

 list<EquationItem> equationItemLst;

 end C_EQUATIONSECTION;

 record C_ALGORITHMSECTION

 Boolean boolean;

 list<AlgorithmItem> algorithmItemLst;

 end C_ALGORITHMSECTION;

 record C_ELEMENT

 Element element;

 end C_ELEMENT;

 record C_EXPRESSION

 Exp exp;

 end C_EXPRESSION;

 record C_MODIFICATION

 Modification modification;

 end C_MODIFICATION;

end Code;

FunctionArgs:

The FunctionArgs datatype consists of a list of positional arguments followed by a list of named arguments.
uniontype FunctionArgs

 record FUNCTIONARGS

 list<Exp> args;

 list<NamedArg> argNames;

 end FUNCTIONARGS;

 record FOR_ITER_FARG

 Exp from;

 Ident var;

 Exp to;

 end FOR_ITER_FARG;

end FunctionArgs;

NamedArg:

The NamedArg datatype consist of an Identifier for the argument and an expression giving the value of the argument.

uniontype NamedArg

 record NAMEDARG

 Ident argName "argName" ;

 Exp argValue "argValue" ;

 end NAMEDARG;

end NamedArg;
Operator:
The Operator type can represent all the expression operators, binary or unary.
uniontype Operator "Expression operators"

 record ADD end ADD;

 record SUB end SUB;

 record MUL end MUL;

 record DIV end DIV;

 record POW end POW;

 record UPLUS end UPLUS;

 record UMINUS end UMINUS;

 record AND end AND;

 record OR end OR;

 record NOT end NOT;

 record LESS end LESS;

 record LESSEQ end LESSEQ;

 record GREATER end GREATER;

 record GREATEREQ end GREATEREQ;

 record EQUAL end EQUAL;

 record NEQUAL end NEQUAL;

end Operator;

Subscript:
The Subscript data type is used both in array declarations and component references. This might seem strange, but it is inherited from the grammar. The NOSUB constructor means that the dimension size is undefined when used in a declaration, and when it is used in a component reference it means a slice of the whole dimension.

uniontype Subscript

 record NOSUB end NOSUB;

 record SUBSCRIPT

 Exp subScript "subScript" ;

 end SUBSCRIPT;

end Subscript;

ComponentRef:
A component reference is the fully or partially qualified name of a component. It is represented as a list of identifier-subscript pairs.
uniontype ComponentRef

 record CREF_QUAL

 Ident name;

 list<Subscript> subScripts;

 ComponentRef componentRef;

 end CREF_QUAL;

 record CREF_IDENT

 Ident name;

 list<Subscript> subscripts;

 end CREF_IDENT;

end ComponentRef;

Path:

The type Path is used to store references to class names, or names inside class definitions.
uniontype Path

 record QUALIFIED

 Ident name;

 Path path;

 end QUALIFIED;

 record IDENT

 Ident name;

 end IDENT;

end Path;
Restrictions:
These constructors each correspond to a different kind of class declaration in Modelica, except the last four, which are used for the predefined types. The parser assigns each class declaration one of the restrictions, and the actual class definition is checked for conformance during translation. The predefined types are created in the Builtin module and are assigned special restrictions.

uniontype Restriction

 record R_CLASS end R_CLASS;

 record R_MODEL end R_MODEL;

 record R_RECORD end R_RECORD;

 record R_BLOCK end R_BLOCK;

 record R_CONNECTOR end R_CONNECTOR;

 record R_EXP_CONNECTOR end R_EXP_CONNECTOR;

 record R_TYPE end R_TYPE;

 record R_PACKAGE end R_PACKAGE;

 record R_FUNCTION end R_FUNCTION;

 record R_ENUMERATION end R_ENUMERATION;

 record R_PREDEFINED_INT end R_PREDEFINED_INT;

 record R_PREDEFINED_REAL end R_PREDEFINED_REAL;

 record R_PREDEFINED_STRING end R_PREDEFINED_STRING;

 record R_PREDEFINED_BOOL end R_PREDEFINED_BOOL;

 record R_PREDEFINED_ENUM end R_PREDEFINED_ENUM;

end Restriction;
Annotation:
An Annotation is a class_modification.

uniontype Annotation

 record ANNOTATION

 list<ElementArg> elementArgs;

 end ANNOTATION;

end Annotation;
Comment:
uniontype Comment

 record COMMENT

 Option<Annotation> annotation_;

 Option<String> comment;

 end COMMENT;

end Comment;

ExternalDecl:
The type ExternalDecl is used to represent declaration of an external function wrapper.
uniontype ExternalDecl

 record EXTERNALDECL

 Option<Ident> funcName "The name of the external function" ;

 Option<String> lang "Language of the external function" ;

 Option<ComponentRef> output_ "output parameter as return value" ;

 list<Exp> args "only positional arguments, i.e. expression list" ;

 Option<Annotation> annotation_;

 end EXTERNALDECL;

end ExternalDecl;

Dependencies:
Module dependencies of the Absyn module: Debug, Dump, Util, Print.

3.4.2 Algorithm – Data Types and Functions for Algorithm Sections

This module contains data types and functions for managing algorithm sections. The algorithms in the AST are analyzed by the Inst module which uses this module to represent the algorithm sections. No processing of any kind, except for building the data structure is done in this module. It is used primarily by the Inst module which both provides its input data and uses its "output" data.

Module dependencies: Exp, Types, SCode, Util, Print, Dump, Debug.
3.4.3 Builtin – Builtin Types and Variables

This module defines the builtin types, variables and functions in Modelica. The only exported functions are initial_env and simple_initial_env. There are several builtin attributes defined in the builtin types, such as unit, start, etc.

Module dependencies: Absyn, SCode, Env, Types, ClassInf, Debug, Print.
3.4.4 Ceval – Constant Evaluation of Expressions and Command Interpretation
This module handles constant propagation and expression evaluation, as well as interpretation and execution of user commands, e.g. plot(...). When elaborating expressions, in the Static module, expressions are checked to find out their type. This module also checks whether expressions are constant. In such as case the function ceval in this module will then evaluate the expression to a constant value, defined in the Values module.

Input:

Env: Environment with bindings.

Exp: Expression to check for constant evaluation.

Bool flag determines whether the current instantiation is implicit.

InteractiveSymbolTable is optional, and used in interactive mode, e.g. from mosh.
Output:

 Value: The evaluated value

 InteractiveSymbolTable: Modified symbol table.
 Subscript list : Evaluates subscripts and generates constant expressions.

Module dependencies: Absyn, Env, Exp, Interactive, Values, Static, Print, Types, ModUtil, System, SCode, Inst, Lookup, Dump, DAE, Debug, Util, Modsim, ClassInf, RTOpts, Parse, Prefix, Codegen, ClassLoader.
3.4.5 ClassInf – Inference and Check of Class Restrictions
This module deals with class inference, i.e., determining if a class definition adheres to one of the class restrictions, and, if specifically declared in a restricted form, if it breaks that restriction.

The inference is implemented as a finite state machine. The function start initializes a new machine, and the function trans signals transitions in the machine. Finally, the state can be checked against a restriction with the valid function.

Module dependencies: Absyn, SCode, Print.
3.4.6 ClassLoader – Loading of Classes from $MODELICAPATH
This module loads classes from $MODELICAPATH. It exports only one function: the loadClass function. It is currently (2004-09-27) only used by module Ceval when using the loadClass function in the interactive environment.

Module dependencies: Absyn, System, Lookup, Interactive, Util, Parse, Print, Env, Dump.
3.4.7 Codegen – Generate C Code from DAE
Generate C code from DAE (Flat Modelica) for Modelica functions and algorithms (SimCodeGen is generating code from equations). This code is compiled and linked to the simulation code or when functions are called from the interactive environment.

Input: DAE

Output: (generated code output by the Print module)

Module dependencies: Absyn, Exp, Types, Inst, DAE, Print, Util, ModUtil, Algorithm, ClassInf, Dump, Debug.
3.4.8 Connect – Connection Set Management
Connections generate connection sets (represented using the datatype Set defined in this module) which are constructed during code instantiation. When a connection set is generated, it is used to create a number of equations. The kind of equations created depends on the type of the set.

The Connect module is called from the Inst module and is responsible for creation of all connect-equations later passed to the DAE module.
Module dependencies: Exp, Env, Static, DAE.
3.4.9 Corba – Modelica Compiler Corba Communication Module
The Corba actual implementation differs between Windows and Unix versions. The Windows implementation is located in ./winruntime and the Unix version lies in ./runtime.
OpenModelica does not in itself include a complete CORBA implementation. You need to download one, for example MICO from http://www.mico.org. There also exists some options that can be sent to configure concerning the usage of CORBA:

· --with-CORBA=/location/of/corba/library

· --without-CORBA

No module dependencies.

3.4.10 DAE – DAE Equation Management and Output
This module defines data structures for DAE equations and declarations of variables and functions. It also exports some help functions for other modules. The DAE data structure is the result of flattening, containing only flat Modelica, i.e., equations, algorithms, variables and functions.
uniontype DAElist "A DAElist is a list of Elements. Variables, equations,

 functions, algorithms, etc. are all found in this list."

 record DAE

 list<Element> elementLst;

 end DAE;

end DAElist;

type Ident = String;
type InstDims = list<Exp.Subscript>;
type StartValue = Option<Exp.Exp>;

uniontype VarKind

 record VARIABLE end VARIABLE;
 record DISCRETE end DISCRETE;
 record PARAM end PARAM;
 record CONST end CONST;
end VarKind;

uniontype Type

 record REAL end REAL;
 record INT end INT;
 record BOOL end BOOL;
 record STRING end STRING;
 record ENUM end ENUM;

 record ENUMERATION

 list<String> stringLst;

 end ENUMERATION;

end Type;

uniontype Flow "The Flow of a variable indicates if it is a Flow variable or not, or if

 it is not a connector variable at all."

 record FLOW end FLOW;
 record NON_FLOW end NON_FLOW;
 record NON_CONNECTOR end NON_CONNECTOR;
end Flow;

uniontype VarDirection

 record INPUT end INPUT;
 record OUTPUT end OUTPUT;
 record BIDIR end BIDIR;
end VarDirection;

uniontype Element

 record VAR

 Exp.ComponentRef componentRef;

 VarKind varible "variable name" ;

 VarDirection variable "variable, constant, parameter, etc." ;

 Type input_ "input, output or bidir" ;

 Option<Exp.Exp> one "one of the builtin types" ;

 InstDims binding "Binding expression e.g. for parameters" ;

 StartValue dimension "dimension of original component" ;

 Flow value "value of start attribute" ;

 list<Absyn.Path> flow_ "Flow of connector variable. Needed for

unconnected flow variables" ;

 Option<VariableAttributes> variableAttributesOption;

 Option<Absyn.Comment> absynCommentOption;

 end VAR;

 record DEFINE

 Exp.ComponentRef componentRef;

 Exp.Exp exp;

 end DEFINE;

 record INITIALDEFINE

 Exp.ComponentRef componentRef;

 Exp.Exp exp;

 end INITIALDEFINE;

 record EQUATION

 Exp.Exp exp;

 Exp.Exp scalar "Scalar equation" ;

 end EQUATION;

 record ARRAY_EQUATION

 list<Integer> dimension "dimension sizes" ;

 Exp.Exp exp;

 Exp.Exp array "array equation" ;

 end ARRAY_EQUATION;

 record WHEN_EQUATION

 Exp.Exp condition "Condition" ;

 list<Element> equations "Equations" ;

 Option<Element> elsewhen_ "Elsewhen should be of type WHEN_EQUATION" ;

 end WHEN_EQUATION;

 record IF_EQUATION

 Exp.Exp condition1 "Condition" ;

 list<Element> equations2 "Equations of true branch" ;

 list<Element> equations3 "Equations of false branch" ;

 end IF_EQUATION;

 record INITIAL_IF_EQUATION

 Exp.Exp condition1 "Condition" ;

 list<Element> equations2 "Equations of true branch" ;

 list<Element> equations3 "Equations of false branch" ;

 end INITIAL_IF_EQUATION;

 record INITIALEQUATION

 Exp.Exp exp1;

 Exp.Exp exp2;

 end INITIALEQUATION;

 record ALGORITHM

 Algorithm.Algorithm algorithm_;

 end ALGORITHM;

 record INITIALALGORITHM

 Algorithm.Algorithm algorithm_;

 end INITIALALGORITHM;

 record COMP

 Ident ident;

 DAElist dAElist "a component with subelements, normally

only used at top level." ;

 end COMP;

 record FUNCTION

 Absyn.Path path;

 DAElist dAElist;

 Types.Type type_;

 end FUNCTION;

 record EXTFUNCTION

 Absyn.Path path;

 DAElist dAElist;

 Types.Type type_;

 ExternalDecl externalDecl;

 end EXTFUNCTION;

 record ASSERT

 Exp.Exp exp;

 end ASSERT;

 record REINIT

 Exp.ComponentRef componentRef;

 Exp.Exp exp;

 end REINIT;

end Element;

uniontype VariableAttributes

 record VAR_ATTR_REAL

 Option<String> quantity "quantity" ;

 Option<String> unit "unit" ;

 Option<String> displayUnit "displayUnit" ;

 tuple<Option<Real>, Option<Real>> min "min , max" ;

 Option<Real> initial_ "Initial value" ;

 Option<Boolean> fixed "fixed - true: default for parameter/constant, false - default for other variables" ;

 Option<Real> nominal "nominal" ;

 Option<StateSelect> stateSelectOption;

 end VAR_ATTR_REAL;

 record VAR_ATTR_INT

 Option<String> quantity "quantity" ;

 tuple<Option<Integer>, Option<Integer>> min "min , max" ;

 Option<Integer> initial_ "Initial value" ;

 Option<Boolean> fixed "fixed - true: default for parameter/constant, false - default for other variables" ;

 end VAR_ATTR_INT;

 record VAR_ATTR_BOOL

 Option<String> quantity "quantity" ;

 Option<Boolean> initial_ "Initial value" ;

 Option<Boolean> fixed "fixed - true: default for parameter/constant, false - default for other variables" ;

 end VAR_ATTR_BOOL;

 record VAR_ATTR_STRING

 Option<String> quantity "quantity" ;

 Option<String> initial_ "Initial value" ;

 end VAR_ATTR_STRING;

 record VAR_ATTR_ENUMERATION

 Option<String> quantity "quantity" ;

 tuple<Option<Exp.Exp>, Option<Exp.Exp>> min "min , max" ;

 Option<Exp.Exp> start "start" ;

 Option<Boolean> fixed "fixed - true: default for parameter/constant, false - default for other variables" ;

 end VAR_ATTR_ENUMERATION;

end VariableAttributes;

uniontype StateSelect

 record NEVER end NEVER;
 record AVOID end AVOID;
 record DEFAULT end DEFAULT;
 record PREFER end PREFER;
 record ALWAYS end ALWAYS;
end StateSelect;

uniontype ExtArg

 record EXTARG

 Exp.ComponentRef componentRef;

 Types.Attributes attributes;

 Types.Type type_;

 end EXTARG;

 record EXTARGEXP

 Exp.Exp exp;

 Types.Type type_;

 end EXTARGEXP;

 record EXTARGSIZE

 Exp.ComponentRef componentRef;

 Types.Attributes attributes;

 Types.Type type_;

 Exp.Exp exp;

 end EXTARGSIZE;

 record NOEXTARG end NOEXTARG;

end ExtArg;

uniontype ExternalDecl

 record EXTERNALDECL

 Ident ident;

 list<ExtArg> external_ "external function name" ;

 ExtArg parameters "parameters" ;

 String return "return type" ;

 Option<Absyn.Annotation> language "language e.g. Library" ;

 end EXTERNALDECL;

end ExternalDecl;

Som of the more important functions for unparsing (dumping) flat Modelica in DAE form:
The function dump unparses (converts into string or prints) a DAElist into the standard output format by calling dumpFunction and dumpCompElement. We also have (?? explain more):
dumpStr: DAElist => string

dumpGraphviz: DAElist => ()

dumpDebug

dumpCompElement (classes) calls dumpElements, which calls:
dumpVars

dumpList equations

dumpList algorithm

dumpList compElement (classes)
...
Module dependencies: Absyn, Exp, Algorithm, Types, Values.

3.4.11 DAEEXT – External Utility Functions for DAE Management
The DAEEXT module is an externally implemented module (in file runtime/daeext.cpp) used for the BLT and index reduction algorithms in DAELow. The implementation mainly consists of bit vector datatypes and operations implemented using std::vector<bool> since such functionality is not available in MetaModelica.

No module dependencies.

3.4.12 DAELow – Lower Level DAE Using Sparse Matrises for BLT
This module handles a lowered form of a DAE including equations, simple equations with equal operator only, and algorithms, in three separate lists: equations, simple equations, algorithms. The variables are divided into two groups: 1) known variables, parameters, and constants; 2) unknown variables including state variables and algebraic variables.

The module includes the BLT sorting algorithm which sorts the equations into blocks, and the index reduction algorithm using dummy derivatives for solving higher index problems. It also includes an implementation of the Tarjan algorithm to detect strongly connected components during the BLT sorting.

Module dependencies: DAE, Exp, Values, Absyn, Algorithm.

3.4.13 Debug – Trace Printing Used for Debugging
Printing routines for debug output of strings. Also flag controlled printing. When flag controlled printing functions are called, printing is done only if the given flag is among the flags given in the runtime arguments to the compiler.

If the +d-flag, i.e., if +d=inst,lookup is given in the command line, only calls containing these flags will actually print something, e.g.: fprint("inst", "Starting instantiation..."). See runtime/rtopts.c for implementation of flag checking.

Module dependencies: Rtopts, Dump, Print.

3.4.14 Derive – Differentiation of Equations from DAELow
This module is responsible for symbolic differentiation of equations and expressions. It is currently (2004-09-28) only used by the solve function in the Exp module for solving equations.

The symbolic differentiation is used by the Newton-Raphson method and by the index reduction.

Module dependencies: DAELow, Exp, Absyn, Util, Print.

3.4.15 Dump – Abstract Syntax Unparsing/Printing
Printing routines for unparsing and debugging of the AST. These functions do nothing but print the data structures to the standard output.

The main entry point for this module is the function dump which takes an entire program as an argument, and prints it all in Modelica source form. The other interface functions can be used to print smaller portions of a program.

Module dependencies: Absyn, Interactive, ClassInf, Rtopts, Print, Util, Debug..
3.4.16 DumpGraphviz – Dump Info for Graph visualization of AST
Print the abstract syntax into a text form that can be read by the GraphViz tool (www.graphviz.org) for drawing abstract syntax trees.

Module dependencies: Absyn, Debug, Graphviz, ClassInf, Dump.

3.4.17 Env – Environment Management
This module contains functions and data structures for environment management.

“Code instantiation is made in a context which consists of an environment an an ordered set of parents”, according to the Modelica Specification
An environment is a stack of frames, where each frame contains a number of class and variable bindings. Each frame consist of the following:
· A frame name (corresponding to the class partially instantiated in that frame).
· A binary tree/hash table?? containing a list of classes.
· A binary tree/hash table?? containing a list of functions (functions are overloaded so that several identical function names corresponding to different functions can exist).
· A list of unnamed items consisting of import statements.
type Env = list<Frame>;

uniontype Frame

 record FRAME

 Option<Ident> class_1 "Class name" ;

 BinTree list_2 "List of uniquely named classes and variables" ;

 BinTree list_3 "List of types, which DOES NOT be uniquely named, eg. size have several types" ;

 list<Item> list_4 "list of unnamed items (imports)" ;

 list<Frame> list_5 "list of frames for inherited elements" ;

 list<Exp.ComponentRef> current6 "current connection set crefs" ;

 Boolean encapsulated_7 "encapsulated bool=true means that FRAME is created due to encapsulated class" ;

 end FRAME;

end Frame;

uniontype Item

 record VAR

 Types.Var instantiated "instantiated component" ;

 Option<tuple<SCode.Element, Types.Mod>> declaration "declaration if not fully instantiated." ;

 Boolean if_ "if it typed/fully instantiated or not" ;

 Env env "The environment of the instantiated component

 Contains e.g. all sub components

" ;

 end VAR;

 record CLASS

 SCode.Class class_;

 Env env;

 end CLASS;

 record TYPE

 list<Types.Type> list_ "list since several types with the same name can exist in the same scope (overloading)" ;

 end TYPE;

 record IMPORT

 Absyn.Import import_;

 end IMPORT;

end Item;

The binary tree data structure BinTree used for the environment is generic and can be used in any application. It is defined as follows:

uniontype BinTree "The binary tree data structure

 The binary tree data structure used for the environment is generic and can

 be used in any application."

 record TREENODE

 Option<TreeValue> value "Value" ;

 Option<BinTree> left "left subtree" ;

 Option<BinTree> right "right subtree" ;

 end TREENODE;

end BinTree;

Each node in the binary tree can have a value associated with it.

uniontype TreeValue

 record TREEVALUE

 Key key;

 Value value;

 end TREEVALUE;

end TreeValue;

type Key = Ident "Key" ;

type Value = Item;

constant Env emptyEnv;

As an example lets consider the following Modelica code:

package A

 package B

 import Modelica.SIunits.*;

 constant Voltage V=3.3;

 function foo

 end foo;

 model M1

 Real x,y;

 end M1;

 model M2

 end M2;

 end B;

end A;

When instantiating M1 we will first create the environment for its surrounding scope by a recursive instantiation on A.B giving the environment:

{

 FRAME("A", {Class:B},{},{},false) ,

 FRAME("B", {Class:M1, Class:M2, Variable:V}, {Type:foo},

 {import Modelica.SIunits.*},false)

}

Then, the class M1 is instantiated in a new scope/Frame giving the environment:

{

 FRAME("A", {Class:B},{},{},false) ,

 FRAME("B", {Class:M1, Class:M2, Variable:V}, {Type:foo},

 {Import Modelica.SIunits.*},false),

 FRAME("M1, {Variable:x, Variable:y},{},{},false)

}

Note: The instance hierarchy (components and variables) and the class hierarchy (packages and classes) are combined into the same data structure, enabling a uniform lookup mechanism.
The most important functions in Env:
 function newFrame : (Boolean) => Frame

 function openScope : (Env,Boolean, Option<Ident>) => Env

 function extendFrameC : (Env, SCode.Class) => Env

 function extendFrameClasses : (Env, SCode.Program) => Env

 function extendFrameV : (Env, Types.Var,

 Option<tuple<SCode.Element,Types.Mod>>, Boolean) => Env

 function updateFrameV : (Env, Types.Var,bool) => Env

 function extendFrameT : (Env,Ident,Types.Type) => Env

 function extendFrameI : (Env, Absyn.Import) => Env

 function topFrame : Env => Frame

 function getEnvPath: (Env) => Absyn.Path option
Module dependencies: Absyn, Values, SCode, Types, ClassInf, Exp, Dump, Graphviz, DAE, Print, Util, System.

3.4.18 Exp – Expression Handling after Static Analysis
This file contains the module Exp, which contains data types for describing expressions, after they have been examined by the static analyzer in the module Static. There are of course great similarities with the expression types in the Absyn module, but there are also several important differences.

No overloading of operators occur, and subscripts have been checked to see if they are slices.
Deoverloading of overloaded operators such as ADD (+) is performed, e.g. to operations ADD_ARR, ADD(REAL), ADD(INT). Slice operations are also identified, e.g.:
model A Real b; end A;

model B

 A a[10];

equation

 a.b=fill(1.0,10); // a.b is a slice

end B;

All expressions are also type consistent, and all implicit type conversions in the AST are made explicit here, e.g. Real(1)+1.5 converted from 1+1.5.
Functions:
Some expression simplification and solving is also done here. This is used for symbolic transformations before simulation, in order to rearrange equations into a form needed by simulation tools. The functions simplify, solve, expContains, expEqual, extendCref, etc. perform this functionality, e.g.:
extendCref (ComponentRef, Ident, list<Subscript>) => ComponentRef

simplify(Exp) => Exp

The simplify function simplifies expressions that have been generated in a complex way, i.e., not a complete expression simplification mechanism.

This module also contains functions for printing expressions, for IO, and for conversion to strings. Moreover, graphviz output is supported.
Identifiers :

type Ident = String;
Define Ident as an alias for String and use it for all identifiers in Modelica.
Basic types:
uniontype Type

 record INT end INT;

 record REAL end REAL;

 record BOOL end BOOL;

 record STRING end STRING;

 record ENUM end ENUM;

 record OTHER "e.g. complex types, etc." end OTHER;

 record T_ARRAY

 Type type_;

 list<Integer> arrayDimensions;

 end T_ARRAY;

end Type;
These basic types are not used as expression types (see the Types module for expression types). They are used to parameterize operators which may work on several simple types.
Expressions:

The Exp union type closely corresponds to the Absyn.Exp union type, but is used for statically analyzed expressions. It includes explicit type promotions and typed (non-overloaded) operators. It also contains expression indexing with the ASUB constructor. Indexing arbitrary array expressions is currently not supported in Modelica, but it is needed here.
uniontype Exp "Expressions

 record ICONST

 Integer integer "Integer constants" ;

 end ICONST;

 record RCONST

 Real real "Real constants" ;

 end RCONST;

 record SCONST

 String string "String constants" ;

 end SCONST;

 record BCONST

 Boolean bool "Bool constants" ;

 end BCONST;

 record CREF

 ComponentRef componentRef;

 Type component "component references, e.g. a.b[2].c[1]" ;

 end CREF;

 record BINARY

 Exp exp;

 Operator operator;

 Exp binary "Binary operations, e.g. a+4" ;

 end BINARY;

 record UNARY

 Operator operator;

 Exp unary "Unary operations, -(4x)" ;

 end UNARY;

 record LBINARY

 Exp exp;

 Operator operator;

 Exp logical "Logical binary operations: and, or" ;

 end LBINARY;

 record LUNARY

 Operator operator;

 Exp logical "Logical unary operations: not" ;

 end LUNARY;

 record RELATION

 Exp exp;

 Operator operator;

 Exp relation_ "Relation, e.g. a <= 0" ;

 end RELATION;

 record IFEXP

 Exp exp1;

 Exp exp2;

 Exp if_3 "If expressions" ;

 end IFEXP;

 record CALL

 Absyn.Path path;

 list<Exp> expLst;

 Boolean tuple_ "tuple" ;

 Boolean builtin "builtin Function call" ;

 end CALL;

 record ARRAY

 Type type_;

 Boolean scalar "scalar for codegen" ;

 list<Exp> array "Array constructor, e.g. {1,3,4}" ;

 end ARRAY;

 record MATRIX

 Type type_;

 Integer integer;

 list<list<tuple<Exp, Boolean>>> scalar "Matrix constructor. e.g. [1,0;0,1]" ;

 end MATRIX;

 record RANGE

 Type type_;

 Exp exp;

 Option<Exp> expOption;

 Exp range "Range constructor, e.g. 1:0.5:10" ;

 end RANGE;

 record TUPLE

 list<Exp> PR "PR. Tuples, used in func calls returning several

 arguments" ;

 end TUPLE;

 record CAST

 Type type_;

 Exp cast "Cast operator" ;

 end CAST;

 record ASUB

 Exp exp;

 Integer array "Array subscripts" ;

 end ASUB;

 record SIZE

 Exp exp;

 Option<Exp> the "The ssize operator" ;

 end SIZE;

 record CODE

 Absyn.Code code;

 Type modelica "Modelica AST constructor" ;

 end CODE;

 record REDUCTION

 Absyn.Path path;

 Exp expr "expr" ;

 Ident ident;

 Exp range "range Reduction expression" ;

 end REDUCTION;

 record END "array index to last element, e.g. a[end]:=1;" end END;

end Exp;

Operators:
Operators which are overloaded in the abstract syntax are here made type-specific. The Integer addition operator ADD(INT) and the Real addition operator ADD(REAL) are two distinct operators.
uniontype Operator

 record ADD

 Type type_;

 end ADD;

 record SUB

 Type type_;

 end SUB;

 record MUL

 Type type_;

 end MUL;

 record DIV

 Type type_;

 end DIV;

 record POW

 Type type_;

 end POW;

 record UMINUS

 Type type_;

 end UMINUS;

 record UPLUS

 Type type_;

 end UPLUS;

 record UMINUS_ARR

 Type type_;

 end UMINUS_ARR;

 record UPLUS_ARR

 Type type_;

 end UPLUS_ARR;

 record ADD_ARR

 Type type_;

 end ADD_ARR;

 record SUB_ARR

 Type type_;

 end SUB_ARR;

 record MUL_SCALAR_ARRAY

 Type a "a { b, c }" ;

 end MUL_SCALAR_ARRAY;

 record MUL_ARRAY_SCALAR

 Type type_ "{a, b} c" ;

 end MUL_ARRAY_SCALAR;

 record MUL_SCALAR_PRODUCT

 Type type_ "{a, b} {c, d}" ;

 end MUL_SCALAR_PRODUCT;

 record MUL_MATRIX_PRODUCT

 Type type_ "{{..},..} {{..},{..}}" ;

 end MUL_MATRIX_PRODUCT;

 record DIV_ARRAY_SCALAR

 Type type_ "{a, b} / c" ;

 end DIV_ARRAY_SCALAR;

 record POW_ARR

 Type type_;

 end POW_ARR;

 record AND end AND;

 record OR end OR;

 record NOT end NOT;

 record LESS

 Type type_;

 end LESS;

 record LESSEQ

 Type type_;

 end LESSEQ;

 record GREATER

 Type type_;

 end GREATER;

 record GREATEREQ

 Type type_;

 end GREATEREQ;

 record EQUAL

 Type type_;

 end EQUAL;

 record NEQUAL

 Type type_;

 end NEQUAL;

 record USERDEFINED

 Absyn.Path the "The fully qualified name of the overloaded operator function";

 end USERDEFINED;

end Operator;
Component references:
uniontype ComponentRef "- Component references

 CREF_QUAL(...) is used for qualified component names, e.g. a.b.c

 CREF_IDENT(..) is used for non-qualifed component names, e.g. x "

 record CREF_QUAL

 Ident ident;

 list<Subscript> subscriptLst;

 ComponentRef componentRef;

 end CREF_QUAL;

 record CREF_IDENT

 Ident ident;

 list<Subscript> subscriptLst;

 end CREF_IDENT;

end ComponentRef;

The Subscript and ComponentRef datatypes are simple translations of the corresponding types in the Absyn module.
uniontype Subscript

 record WHOLEDIM "a[:,1]" end WHOLEDIM;

 record SLICE

 Exp a "a[1:3,1], a[1:2:10,2]" ;

 end SLICE;

 record INDEX

 Exp a "a[i+1]" ;

 end INDEX;

end Subscript;

Module dependencies: Absyn, Graphviz, Rtopts, Util, Print, ModUtil, Derive, System, Dump.
3.4.19 Graphviz – Graph Visualization from Textual Representation
Graphviz is a tool for drawing graphs from a textual representation. This module generates the textual input to Graphviz from a tree defined using the data structures defined here, e.g. Node for tree nodes. See http://www.research.att.com/sw/tools/graphviz/ .

Input: The tree constructed from data structures in Graphviz

Output: Textual input to graphviz, written to stdout.

3.4.20 Inst – Code Instantiation/Elaboration of Modelica Models
This module is responsible for code instantiation of Modelica models. Code instantiation is the process of elaborating and expanding the model component representation, flattening inheritance, and generating equations from connect equations.

The code instantiation process takes Modelica AST as defined in SCode and produces variables and equations and algorithms, etc. as defined in the DAE module
This module uses module Lookup to lookup classes and variables from the environment defined in Env. It uses the Connect module for generating equations from connect equations. The type system defined in Types is used for code instantiation of variables and types. The Mod module is used for modifiers and merging of modifiers.
3.4.20.1 Overview:

The Inst module performs most of the work of the flattening of models:
1. Build empty initial environment.
2. Code instantiate certain classes implicitly, e.g. functions.
3. Code instantiate (last class or a specific class) in a program explicitly.

The process of code instantiation consists of the following:

1. Open a new scope => a new environment
2. Start the class state machine to recognize a possible restricted class.
3. Instantiate class in environment.
4. Generate equations.
5. Read class state & generate Type information.

3.4.20.2 Code Instantiation of a Class in an Environment
(?? Add more explanations)

Function: instClassdef
PARTS: instElementList
DERIVED (i.e class A=B(mod);):
1. lookup class

2. elabMod
3. Merge modifications

4. instClassIn (…,mod, …)
3.4.20.3 InstElementList & Removing Declare Before Use
The procedure is as follows:
1. First implicitly declare all local classes and add component names (calling extendComponentsToEnv), Also merge modifications (This is done by saving modifications in the environment and postponing to step 3, since type information is not yet available).

2. Expand all extends nodes.

3. Perform instantiation, which results in DAE elements.
Note: This is probably the most complicated parts of the compiler!

Design issue: How can we simplify this? The complexity is caused by the removal of Declare-before-use in combination with sequential translation structure (Absyn->Scode->(Exp,Mod,Env)).
3.4.20.4 The InstElement Function

This is a huge function to handle element instantiation in detail, including the following items:
· Handling extends clauses.
· Handling component nodes (the function update_components_in_env is called if used before it is declared).
· Elaborated dimensions (?? explain).
· InstVar called (?? explain).
· ClassDefs (?? explain).
3.4.20.5 The InstVar Function
The instVar function performs code instantiation of all subcomponents of a component. It also instantiates each array element as a scalar, i.e., expands arrays to scalars, e.g.:
Real x[2] => Real x[1]; Real x[2]; in flat Modelica.
3.4.20.6 Dependencies

Module dependencies: Absyn, ClassInf, Connect, DAE, Env, Exp, SCode, Mod, Prefix, Types.

3.4.21 Interactive – Model Management and Expression Evaluation
This module contain functionality for model management, expression evaluation, etc. in the interactive environment. The module defines a symbol table used in the interactive environment containing the following:

· Modelica models (described using Absyn abstract syntax).
· Variable bindings.
· Compiled functions (so they do not need to be recompiled).
· Instantiated classes (that can be reused, not implemented. yet).
· Modelica models in SCode form (to speed up instantiation. not implemented. yet).
The most important data types:
uniontype InteractiveSymbolTable "The Interactive Symbol Table"

 record SYMBOLTABLE

 Absyn.Program ast "The ast" ;

 SCode.Program explodedAst "The exploded ast" ;

 list<InstantiatedClass> instClsLst "List of instantiated classes" ;

 list<InteractiveVariable> lstVarVal "List of variables with values" ;

 list<tuple<Absyn.Path, Types.Type>> compiledFunctions "List of compiled

 functions, fully qualified name + type" ;

 end SYMBOLTABLE;

end InteractiveSymbolTable;

uniontype InteractiveStmt "The Interactive Statement:

 An Statement given in the interactive environment

 can either be an Algorithm statement or an expression"

 record IALG

 Absyn.AlgorithmItem algItem;

 end IALG;

 record IEXP

 Absyn.Exp exp;

 end IEXP;

end InteractiveStmt;

uniontype InteractiveStmts "The Interactive Statements:

 Several interactive statements are used in the

 Modelica scripts"

 record ISTMTS

 list<InteractiveStmt> interactiveStmtLst "interactiveStmtLst" ;

 Boolean semicolon "when true, the result will not be shown in
 the interactive environment" ;

 end ISTMTS;

end InteractiveStmts;

uniontype InstantiatedClass "The Instantiated Class"

 record INSTCLASS

 Absyn.Path qualName " The fully qualified name of the inst:ed class";

 list<DAE.Element> daeElementLst " The list of DAE elements";

 Env.Env env "The env of the inst:ed class";

 end INSTCLASS;

end InstantiatedClass;

uniontype InteractiveVariable "- Interactive Variable"

 record IVAR

 Absyn.Ident varIdent "The variable identifier";

 Values.Value value "The expression containing the value";

 Types.Type type_ " The type of the expression";

 end IVAR;

end InteractiveVariable;
Two of the more important functions and their input/output:
function evaluate

 input InteractiveStmts inInteractiveStmts;

 input InteractiveSymbolTable inInteractiveSymbolTable;

 input Boolean inBoolean;

 output String outString;

 output InteractiveSymbolTable outInteractiveSymbolTable;

algorithm

 ...

end evaluate;

function updateProgram

 input Absyn.Program inProgram1;

 input Absyn.Program inProgram2;

 output Absyn.Program outProgram;
algorithm

 ...

end updateProgram;
Module dependencies: Absyn, SCode, DAE, Types, Values, Env, Dump, Debug, Rtops, Util, Parse, Prefix, Mod, Lookup, ClassInf, Exp, Inst, Static, ModUtil, Codegen, Print, System, ClassLoader, Ceval.

3.4.22 Lookup – Lookup of Classes, Variables, etc.
This module is responsible for the lookup mechanism in Modelica. It is responsible for looking up classes, types, variables, etc. in the environment of type Env by following the lookup rules.

The important functions are the following:

· lookupClass – to find a class.

· lookupType – to find types (e.g. functions, types, etc.).

· lookupVar – to find a variable in the instance hierarchy.

Concerning builtin types and operators:

· Built-in types are added in initialEnv => same lookup for all types.

· Built-in operators, like size(...), are added as functions to initialEnv.

Note the difference between Type and Class: the type of a class is defined by ClassInfo state + variables defined in the Types module.

Module dependencies: Absyn, ClassInf, Types, Exp, Env, SCode.

3.4.23 Main – The Main Program
This is the main program in the OpenModelica system. It either translates a file given as a command line argument (see Chapter 2) or starts a server loop communicating through CORBA or sockets. (The Win32 implementation only implements CORBA). It performs the following functions:
· Calls the parser

· Invokes the Interactive module for command interpretation which in turn calls to Ceval for expression evaluation when needed.
· Outputs flattened DAEs if desired.

· Calls code generation modules for C code generation.
Module dependencies: Absyn, Modutil, Parse, Dump, Dumpgraphviz, SCode, DAE, DAElow, Inst, Interactive, Rtopts, Debug, Codegen, Socket, Print, Corba, System, Util, SimCodegen.
Optional dependencies for parallel code generation: ??
3.4.24 Mod – Modification Handling
Modifications are simply the same kind of modifications used in the Absyn module.

This type is very similar to SCode.Mod. The main difference is that it uses Exp.Exp in the Exp module for the expressions. Expressions stored here are prefixed and type checked.

 The datatype itself (Types.Mod) has been moved to the Types module to prevent circular dependencies.
A few important functions:
· elabMod(Env.Env, Prefix.Prefix, Scode.Mod) => Mod Elaborate modifications.

· merge(Mod, Mod) => Mod Merge of Modifications according to merging rules in Modelica.
Module dependencies: Absyn, Env, Exp, Prefix, SCode, Types, Dump, Debug, Print, Inst, Static, Values, Util.
3.4.25 ModSim – Communication for Simulation, Plotting, etc.
This module communicates with the backend (through files) for simulation, plotting etc. Called from the Ceval module.

Module dependencies: System, Util.

3.4.26 ModUtil – Modelica Related Utility Functions
This module contains various utility functions. For example converting a path to a string and comparing two paths. It is used pretty much everywhere. The difference between this module and the Util module is that ModUtil contains Modelica related utilities. The Util module only contains “low-level” “generic” utilities, for example finding elements in lists.

Module dependencies: Absyn, DAE, Exp, Rtopts, Util, Print.

3.4.27 Parse – Parse Modelica or Commands into Abstract Syntax
Interface to external code for parsing Modelica text or interactive commands. The parser module is used for both parsing of files and statements in interactive mode. Some functions never fails, even if parsing fails. Instead, they return an error message other than "Ok".

 Input: String to parse

 Output: Absyn.Program or InteractiveStmts
Module dependencies: Absyn, Interactive.

3.4.28 Prefix – Handling Prefixes in Variable Names
When performing code instantiation of an expression, there is an instance hierarchy prefix (not package prefix) that for names inside nested instances has to be added to each variable name to be able to use it in the flattened equation set.

 An instance hierarchy prefix for a variable x could be for example a.b.c so that the fully qualified name is a.b.c.x, if x is declared inside the instance c, which is inside the instance b, which is inside the instance a.

Module dependencies: Absyn, Exp, Env, Lookup, Util, Print..

3.4.29 Print – Buffered Printing to Files and Error Message Printing
This module contains a buffered print function to be used instead of the builtin print function, when the output should be redirected to some other place. It also contains print functions for error messages, to be used in interactive mode.

No module dependencies.

3.4.30 RTOpts – Run-time Command Line Options
This module takes care of command line options. It is possible to ask it what flags are set, what arguments were given etc. This module is used pretty much everywhere where debug calls are made.

No module dependencies.

3.4.31 SCode – Lower Level Intermediate Representation
This module contains data structures to describe a Modelica model in a more convenient way than the Absyn module does. The most important function in this module is elaborate which turns an abstract syntax tree into an SCode representation. The SCode representation is used as input to the Inst module.
· Defines a lower-level elaborated AST.
· Changed types:
· Modifications

· Expressions (uses Exp module)

· ClassDef (PARTS divided into equations, elements and algorithms)

· Algorithms uses Algorithm module

· Element Attributes enhanced.

· Three important public Functions

· elaborate (Absyn.Program) => Program
· elabClass: Absyn.Class => Class

· buildMod (Absyn.Modification option, bool) => Mod
Module dependencies: Absyn, Dump, Debug, Print.

3.4.32 SimCodegen – Generate Simulation Code for Solver
This module generates simulation code to be compiled and executed to a (numeric) solver. It outputs the generated simulation code to a file with a given filename.

 Input: DAELow.

Output: To file

Module dependencies: Absyn, DAElow, Exp, Util, RTOpts, Debug, System, Values.

3.4.33 Socket – (Depreciated) OpenModelica Socket Communication Module
This module is being depreciated and replaced by the Corba implementation. It is the socket connection module of the OpenModelica compiler, still somewhat useful for debugging, and available for Linux and CygWin. Socket is used in interactive mode if the compiler is started with +d=interactive. External implementation in C is in ./runtime/soecketimpl.c.

This socket communication is not implemented in the Win32 version of OpenModelica. Instead, for Win32 build using +d=interactiveCorba.

No module dependencies.

3.4.34 Static – Static Semantic Analysis of Expressions
This module performs static semantic analysis of expressions. The analyzed expressions are built using the constructors in the Exp module from expressions defined in Absyn. Also, a set of properties of the expressions is calculated during analysis. Properties of expressions include type information and a boolean indicating if the expression is constant or not. If the expression is constant, the Ceval module is used to evaluate the expression value. A value of an expression is described using the Values module.

 The main function in this module is eval_exp which takes an Absyn.Exp abstract syntax tree and transforms it into an Exp.Exp tree, while performing type checking and automatic type conversions, etc.

To determine types of builtin functions and operators, the module also contain an elaboration handler for functions and operators. This function is called elabBuiltinHandler. Note: These functions should only determine the type and properties of the builtin functions and operators and not evaluate them. Constant evaluation is performed by the Ceval module.

 The module also contain a function for deoverloading of operators, in the deoverload function. It transforms operators like '+' to its specific form, ADD, ADD_ARR, etc.

Interactive function calls are also given their types by elabExp, which calls elabCallInteractive.

Elaboration for functions involve checking the types of the arguments by filling slots of the argument list with first positional and then named arguments to find a matching function. The details of this mechanism can be found in the Modelica specification. The elaboration also contain function deoverloading which will be added to Modelica in the future when lookup of overloaded user-defined functions is supported.
We summarize a few of the functions:
Expression analysis:
· elabExp: Absyn.Exp => (Exp.Exp, Types.Properties) – Static analysis, finding out properties.
· elabGraphicsExp – for graphics annotations.
· elabCref – check component type, constant binding.
· elabSubscripts: Absyn.Subscript => Exp.Subscript – Determine whether subscripts are constant

Constant propagation

· ceval
The elabExp function handles the following:
· constants: integer, real, string, bool

· binary and unary operations, relations

· conditional: ifexp

· function calls

· arrays: array, range, matrix

The ceval function:
· Compute value of a constant expressions

· Results as Values.Value type
The canonCref function:
· Convert Exp.ComponentRef to canonical form

· Convert subscripts to constant values

The elabBuiltinHandler function:
· Handle builtin function calls such as size, zeros, ones, fill, etc.

Module dependencies: Absyn, Exp, SCode, Types, Env, Values, Interactive, ClassInf, Dump, Print, System, Lookup, Debug, Inst, Codegen, Modutil, DAE, Util, RTOpts, Parse, ClassLoader, Mod, Prefix, CEval

3.4.35 System – System Calls and Utility Functions
This module contain a set of system calls and utility functions, e.g. for compiling and executing stuff, reading and writing files, operations on strings and vectors, etc., which are implemented in C. Implementation in runtimesystemimpl.c In comparison, the Util module has utilities implemented in MetaModelica.
Module dependencies: Values.

3.4.36 TaskGraph – Building Task Graphs from Expressions and Systems of Equations
This module is used in the optional modpar part of OpenModelica for bulding task graphs for automatic parallelization of the result of the BLT decomposition.

 The exported function build_taskgraph takes the lowered form of the DAE defined in the DAELow module and two assignments vectors (which variable is solved in which equation) and the list of blocks given by the BLT decomposition.

 The module uses the TaskGraphExt module for the task graph datastructure itself, which is implemented using the Boost Graph Library in C++.
Module dependencies: Exp, DAELow, TaskGraphExt, Util, Absyn, DAE, CEval, Values, Print.

3.4.37 TaskGraphExt – The External Representation of Task Graphs
This module is the interface to the externally implemented task graph using the Boost Graph Library in C++.
Module dependencies: Exp, DAELow.

3.4.38 Types – Representation of Types and Type System Info
This module specifies the Modelica Language type system according to the Modelica Language specification. It contains an MetaModelica type called Type which defines types. It also contains functions for determining subtyping etc.

 There are a few known problems with this module. It currently depends on SCode.Attributes, which in turn depends on Absyn.ArrayDim. However, the only things used from those modules are constants that could be moved to their own modules.
Identifiers:

 type Ident = string

Variables:

uniontype Var "- Variables"

 record VAR

 Ident name "name" ;

 Attributes attributes "attributes" ;

 Boolean protected_ "protected" ;

 Type type_ "type" ;

 Binding binding " equation modification" ;

 end VAR;

end Var;

uniontype Attributes "- Attributes"

 record ATTR

 Boolean flow_ "flow" ;

 SCode.Accessibility accessibility "accessibility" ;

 SCode.Variability parameter_ "parameter" ;

 Absyn.Direction direction "direction" ;

 end ATTR;

end Attributes;

uniontype Binding "- Binding"

 record UNBOUND end UNBOUND;

 record EQBOUND

 Exp.Exp exp "exp" ;

 Option<Values.Value> evaluatedExp "evaluatedExp; evaluated exp" ;

 Const constant_ "constant" ;

 end EQBOUND;

 record VALBOUND

 Values.Value valBound "valBound" ;

 end VALBOUND;

end Binding;
Types:

 type Type = tuple<TType, Option<Absyn.Path>> "A Type is a tuple of a TType

 (containing the actual type)
 and a optional classname

 for the class where the

 type originates from.";
uniontype TType "-TType contains the actual type"

 record T_INTEGER

 list<Var> varLstInt "varLstInt" ;

 end T_INTEGER;

 record T_REAL

 list<Var> varLstReal "varLstReal" ;

 end T_REAL;

 record T_STRING

 list<Var> varLstString "varLstString" ;

 end T_STRING;

 record T_BOOL

 list<Var> varLstBool "varLstBool" ;

 end T_BOOL;

 record T_ENUM end T_ENUM;

 record T_ENUMERATION

 list<String> names "names" ;

 list<Var> varLst "varLst" ;

 end T_ENUMERATION;

 record T_ARRAY

 ArrayDim arrayDim "arrayDim" ;

 Type arrayType "arrayType" ;

 end T_ARRAY;

 record T_COMPLEX

 ClassInf.State complexClassType " The type of. a class" ;

 list<Var> complexVarLst " The variables of a complex type" ;

 Option<Type> complexTypeOption " A complex type can be a subtype of another
 primitive) type (through extends).
 In that case the varlist is empty" ;

 end T_COMPLEX;

 record T_FUNCTION

 list<FuncArg> funcArg "funcArg" ;

 Type funcResultType "Only single-result" ;

 end T_FUNCTION;

 record T_TUPLE

 list<Type> tupleType " For functions returning multiple values.
 Used when type is not yet known" ;

 end T_TUPLE;

 record T_NOTYPE end T_NOTYPE;

 record T_ANYTYPE

 Option<ClassInf.State> anyClassType "Used for generic types. When class state
 present the type is assumed to be a
 complex type which has that restriction";

 end T_ANYTYPE;

end TType;
uniontype ArrayDim "- Array Dimensions"

 record DIM

 Option<Integer> integerOption;

 end DIM;

end ArrayDim;

type FuncArg = tuple<Ident, Type> "- Function Argument" ;
Expression properties:

A tuple has been added to the Types representation. This is used by functions returning multiple arguments.
Used by splitProps:
uniontype Const " Variable properties: The degree of constantness of an expression is determined by the Const datatype.

 Variables declared as 'constant' will get C_CONST constantness.

 Variables declared as \'parameter\' will get C_PARAM constantness and

 all other variables are not constant and will get C_VAR constantness."

 record C_CONST end C_CONST;

 record C_PARAM "\'constant\'s, should always be evaluated" end C_PARAM;

 record C_VAR "\'parameter\'s, evaluated if structural not constants,

 never evaluated"

 end C_VAR;

end Const;

uniontype TupleConst "A tuple is added to the Types.

 This is used by functions whom returns multiple arguments.

 Used by split_props"

 record CONST

 Const const;

 end CONST;

 record TUPLE_CONST

 list<TupleConst> tupleConstLst "tupleConstLst" ;

 end TUPLE_CONST;

end TupleConst;

uniontype Properties "Expression properties:

 For multiple return arguments from functions,

 one constant flag for each return argument.

 The datatype `Properties\' contain information about an

 expression. The properties are created by analyzing the

 expressions."

 record PROP

 Type type_ "type" ;

 Const constFlag "if the type is a tuple, each element have a const flag.";

 end PROP;

 record PROP_TUPLE

 Type type_;

 TupleConst tupleConst " The elements might be tuple themselfs.";

 end PROP_TUPLE;

end Properties;
The datatype Properties contains information about an expression. The properties are created by analyzing the expressions.
To generate the correct set of equations, the translator has to differentiate between the primitive types Real, Integer, String, Boolean and types directly derived from then from other, complex types. For arrays and matrices the type T_ARRAY is used, with the first argument being the number of dimensions, and the second being the type of the objects in the array. The Type type is used to store information about whether a class is derived from a primitive type, and whether a variable is of one of these types.
Modification datatype:
uniontype EqMod "To generate the correct set of equations, the translator has to

 differentiate between the primitive types `Real\', `Integer\',

 `String\', `Boolean\' and types directly derived from then from

 other, complex types. For arrays and matrices the type

 `T_ARRAY\' is used, with the first argument being the number of

 dimensions, and the second being the type of the objects in the

 array. The `Type\' type is used to store information about

 whether a class is derived from a primitive type, and whether a

 variable is of one of these types.

 record TYPED

 Exp.Exp modifierAsExp "modifierAsExp ; modifier as expression" ;

 Option<Values.Value> modifierAsValue " modifier as Value option" ;

 Properties properties "properties" ;

 end TYPED;

 record UNTYPED

 Absyn.Exp exp;

 end UNTYPED;

end EqMod;

uniontype SubMod "-Sub Modification"

 record NAMEMOD

 Ident ident;

 Mod mod;

 end NAMEMOD;

 record IDXMOD

 list<Integer> integerLst;

 Mod mod;

 end IDXMOD;

end SubMod;

uniontype Mod "Modification"

 record MOD

 Boolean final_ "final" ;

 Absyn.Each each_;

 list<SubMod> subModLst;

 Option<EqMod> eqModOption;

 end MOD;

 record REDECL

 Boolean final_ "final" ;

 list<tuple<SCode.Element, Mod>> tplSCodeElementModLst;

 end REDECL;

 record NOMOD end NOMOD;

end Mod;
Module dependencies: Absyn, Exp, ClassInf, Values, SCode, Dump, Debug, Print, Util.
3.4.39 Util – General Utility Functions
This module contains various utility functions, mostly list operations. It is used pretty much everywhere. The difference between this module and the ModUtil module is that ModUtil contains Modelica related utilities. The Util module only contains “low-level” general utilities, for example finding elements in lists.

 This modules contains many functions that use type variables. A type variable is exactly what it sounds like, a type bound to a variable. It is used for higher order functions, i.e., in MetaModelica the possibility to pass a "handle" to a function into another function. But it can also be used for generic data types, like in C++ templates.

 A type variable in MetaModelica is written as ??? 'a.

For instance, in the function list_fill ('a,int) => 'a list the type variable 'a is here used as a generic type for the function list_fill, which returns a list of n elements of a certain type.

No module dependencies.

3.4.40 Values – Representation of Evaluated Expression Values
The module Values contains data structures for representing evaluated constant Modelica values. These include integer, real, string and boolean values, and also arrays of any dimensionality and type.

 Multidimensional arrays are represented as arrays of arrays.

uniontype Value

 record INTEGER Integer integer; end INTEGER;

 record REAL Real real; end REAL;

 record STRING String string; end STRING;

 record BOOL Boolean boolean; end BOOL;

 record ENUM String string; end ENUM;

 record ARRAY list<Value> valueLst; end ARRAY;

 record TUPLE list<Value> valueLst; end TUPLE;

 record RECORD

 Absyn.Path record_ "record name" ;

 list<Value> orderd "orderd set of values" ;

 list<Exp.Ident> comp "comp names for each value" ;

 end RECORD;

 record CODE

 Absyn.Code A "A record consist of value Ident pairs" ;

 end CODE;

end Value;
Module dependencies: Absyn, Exp.

3.4.41 VarTransform – Binary Tree Representation of Variable Transformations
VarTransform contains Binary Tree representation of variables and variable replacements, and performs simple variable subsitutions and transformations in an efficient way. Input is a DAE and a variable transform list, output is the transformed DAE.
Module dependencies: Exp, DAELow, System, Util, Algorithm.

Chapter 4

OMNotebook and OMShell
??To be filled in
4.1 lkjlkj

4.2 lkjlkjlkjlk

Chapter 5

OpenModelica Eclipse Plugin – MDT

??To be filled in
5.1 lkjlkj

5.2 lkjlkjlkjlk

Appendix A

Contributors to OpenModelica

This Appendix lists the individuals who have made significant contributions to OpenModelica, in the form of software development, design, documentation, project leadership, tutorial material, etc. The individuals are listed for each year, from 1998 to the current year: the project leader and main author/editor of this document followed by main contributors followed by contributors in alphabetical order.
A.1 OpenModelica Contributors 2006

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, MathCore Engineering AB, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

David Broman, PELAB, Linköping University, Linköping, Sweden.
Anders Fernström, PELAB, Linköping University, Linköping, Sweden.

Elmir Jagudin, PELAB, Linköping University, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.

Andreas Remar, PELAB, Linköping University, Linköping, Sweden.

Anders Sandholm, PELAB, Linköping University, Linköping, Sweden.
A.2 OpenModelica Contributors 2005

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, PELAB, Linköping University and MathCore Engineering AB, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.
Ingemar Axelsson, PELAB, Linköping University, Linköping, Sweden.

David Broman, PELAB, Linköping University, Linköping, Sweden.
Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.

Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

A.3 OpenModelica Contributors 2004

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

Bernhard Bachmann, Fachhochschule Bielefeld, Bielefeld, Germany.

Peter Bunus, PELAB, Linköping University, Linköping, Sweden.

Daniel Hedberg, MathCore Engineering AB, Linköping, Sweden.

Håkan Lundvall, PELAB, Linköping University, Linköping, Sweden.

Emma Larsdotter Nilsson, PELAB, Linköping University, Linköping, Sweden.

Kaj Nyström, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Lucian Popescu, MathCore Engineering AB, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

A.4 OpenModelica Contributors 2003

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Bunus, PELAB, Linköping University, Linköping, Sweden.

Vadim Engelson, PELAB, Linköping University, Linköping, Sweden.
Daniel Hedberg, Linköping University, Linköping, Sweden.

Eva-Lena Lengquist-Sandelin, PELAB, Linköping University, Linköping, Sweden.

Susanna Monemar, PELAB, Linköping University, Linköping, Sweden.

Adrian Pop, PELAB, Linköping University, Linköping, Sweden.
Erik Svensson, MathCore Engineering AB, Linköping, Sweden.
A.5 OpenModelica Contributors 2002

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

Daniel Hedberg, Linköping University, Linköping, Sweden.

Henrik Johansson, PELAB, Linköping University, Linköping, Sweden

Andreas Karström, PELAB, Linköping University, Linköping, Sweden
A.6 OpenModelica Contributors 2001

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

Levon Saldamli, PELAB, Linköping University, Linköping, Sweden.

Peter Aronsson, Linköping University, Linköping, Sweden.

A.7 OpenModelica Contributors 2000

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

A.8 OpenModelica Contributors 1999

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden

–
Peter Rönnquist, PELAB, Linköping University, Linköping, Sweden.
A.9 OpenModelica Contributors 1998

Peter Fritzson, PELAB, Linköping University, Linköping, Sweden.

David Kågedal, PELAB, Linköping University, Linköping, Sweden.
Vadim Engelson, PELAB, Linköping University, Linköping, Sweden.

IndexError! No index entries found.

_1173887880.doc

[image: image1]

Textual �Model Editor

Emacs �Editor/Browser

Eclipse Plugin �Editor/Browser

Graphical Model�Editor/Browser

Modelica�Debugger

Execution

Modelica�Compiler

Interactive

session handler

DrModelica�NoteBook �Model Editor

_1175058761.doc

plot

Inst

Client: Graphic�Model Editor

SCode

Interactive

Typed Checked Command API

Ceval

Untyped API

Client: Mosh�Interactive Session Handler

etc.

Corba

Client: Eclipse

Plugin

Parse

Server: Main Program �Including Compiler,

Interpreter, etc.

system

_1208874098.doc

RTOpts

Print

System

ModUtil

DAEEXT

Exp

DAE

Algorithm

Types

SCode

Data Type �Modules:

Absyn

DAE: Functions

SimCodeGen

Prefix

ClassInf

VarTransform

CodeGen

Derive

Connect

Mod

(Env, name)

(Exp.Exp,

 Types.Type)

SCode.Exp

Values.Value

Exp.Exp

SCode.Class

(Env, name)

DAE: Equations

Algorithms

SCode

Absyn

Static

Ceval

Inst

DAELow

Parse

Lookup

SCode�/explode

Debug

Utility �Modules:

Dump

Builtin

DAELow.DAELow

C code

DAE, �substlist

DAE

Exp.Exp

Exp.Exp

ClassInf.Event

Exp.Ident

Prefix.Prefix

Types.Mod

SCode.Mod

Exp.Componentref

DAE

ClassInf.State

.mo

Main

Util

ClassLoader

Dump

DAE

Flat Modelica

_1174484389.doc

Flat Modelica

DAE

Dump

C code

SimCodeGen

CodeGen

Main

(Env, name)

(Exp.Exp,

 Types.Type)

SCode.Exp

Values.Value

Exp.Exp

SCode.Class

(Env, name)

DAE

SCode

Absyn

Static

Ceval

Inst

DAELow

Parse

Lookup

SCode�/explode

_1173886034.doc

[image: image1]

Modelica

Source Code

Translator

Analyzer

Optimizer

Code

Generator

C Compiler

Simulation

Modelica model

Flat Model

Sorted equations

Optimized sorted

equations

C Code

Executable

