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Abbreviations 

AAA Authentication, authorization, and accounting 
Adda Advanced data access 
COM Component Object Model 
DA Data Access 
DCOM Distributed Component Object Model 
DCS Distributed control system 
ERP Enterprise resource planning 
HMI Human machine interface 
I/O Input/output 
ITEA Information Technology for European Advancement 
MES Manufacturing execution system 
OLE Object Linking and Embedding 
OMI OpenModelica Interactive 
OPC Open connectivity via open standards (formerly OLE for Process Control) 
OPC UA OPC Unified Architecture 
PLC Programmable logic controller 
SCADA Supervisory control and data acquisition 
SDK Software development kit 
SOA Service-oriented architecture 
UA OPC Unified Architecture 
WS Web services 
XML Extensible Markup Language 
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Summary 

Modelling and simulation tools are needed as a key component in both designing and controlling modern 
technical systems. To connect a simulation tool to hardware devices within such a system, commonly 
used protocols need to be used. Incorporating OPC communication interfaces into the OpenModelica 
simulation environment will enable OpenModelica to be utilized within a wide variety of technical 
systems, including process control and manufacturing automation systems in particular. 

OPC is an established interface specification for accessing field devices within control and automation 
systems; it has become a de facto standard throughout the industry. The newest of OPC specifications, 
OPC Unified Architecture, was developed to improve OPC and to unify all of the functionalities of OPC 
under one interface. Its intended purpose is to substitute the regular OPC, as well as some other 
communication solutions, in new but also in already existing control and automation systems. Moreover, 
OPC UA is designed to be utilized in a broader domain of technical systems. 

The main goal of this project is to implement OPC interfaces, including especially the new OPC UA 
interface, to OpenModelica and thus allow OpenModelica to be used with already existing systems as 
well as systems of tomorrow. In addition, as a minor goal of the project, the OPC UA interface is 
incorporated into Apros modelling and simulation environment by reusing parts of the effort. 

In this report, the basics of the subjects of the project are presented: the Modelica modelling language 
and the OpenModelica environment are gone through in general terms whereas the OPC and OPC UA 
specifications are discussed in depth in order to explain their function within control systems. Technical 
details of the subjects are discussed to the extent which is necessary in deciding between the main 
architectural approaches available for the implementation. 

Two different architectural approaches for the implementation are introduced. The first solution is to 
integrate the OPC UA interface to the simulation executable to enable maximum computational 
performance for the connection. The other solution is to let the OPC UA server operate independently 
from the simulation, thus allowing the simulation model to be altered without disconnecting external 
applications being connected to the OPC UA interface. The former solution is chosen to be implemented 
first and is therefore examined more closely. However, it is suggested that the latter solution can be 
implemented once the initial implementation is completed. 
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1. Introduction 

OpenProd [1] is an ITEA 2 European project [2] which aims to provide a holistic whole-product model-
driven rapid development and design environment for both software and hardware. The goal is achieved 
by using open source tools and components with standardized model representation of products. The 
project described in this report is carried out as a part of the OpenProd project Work Package 5 – 
Interoperability, the goals of which are to allow interoperability between tools and better reuse of tool 
components and to enable modelling and simulation with model components in different formalisms. 

Contemporary technical systems have become large, complex, and mathematically difficult. When it 
comes to building and controlling such systems, the conventional tools are becoming obsolete. In the 
meantime, the exponentially growing computational speed has paved the way for modelling and 
simulation tools development. Compared to performing experiments on real systems, modelling is cost-
effective, fast, and safe, and to control and to modify the system is a lot easier with models than with 
real-world systems. Modelling has thus become an essential tool in constructing such systems. 

Within technical systems there is a need of communication between different parts of the systems. With 
modern systems, the amount and complexity of data that needs to be transferred between those parts is 
increasing all the time. To handle the situation, well-defined procedures must be utilized. 

OpenModelica is a simulation environment used to build and interpret models written in Modelica, an 
equation-based modelling and simulation language. OPC and its latest version OPC UA are 
specifications that can be used in communication among both software and hardware components in 
technical systems, especially in process control and manufacturing automation systems. In this report a 
method for incorporating the OPC interfaces, especially OPC UA, into OpenModelica is proposed. 

In the remaining of this chapter the main subjects of this report are discussed on a higher plane. Their 
backgrounds and characteristics are explained and some examples of their applications are presented. 
In addition, a motivation for the research and development theme is given. 

The subsequent chapters of this report consist of a more detailed description of the problem: Chapter 2 
explains what is to be achieved in general. In Chapters 3 through 5 the technical details of the 
implementation issues are considered: the interfaces and the boundaries set by them are discussed, the 
different architectures are weighed up, one of them is chosen for the implementation and inspected more 
closely as well as the architectural choices made are justified. Chapter 6 concludes the report and its 
results. 

1.1. Modelica and OpenModelica 

1.1.1. The Modelica Language 

Modelica is an open standard modelling and simulation language developed in an international effort 
started in 1996. The Modelica Association, an international non-profit organization, has been developing 
the open standard since then. [3] 

The Modelica language is intended to be used in modelling the dynamic behaviour of technical systems 
which consist of components from different domains. It can be used especially to model large, complex, 
and heterogeneous systems. It is an object-oriented high level language which can be used with systems 
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that need high computational performance. [4] The Modelica language has three key differences to most 
other simulation languages. These features are as follows.  

Firstly, in typical programming, modelling, and simulation languages, the functionality of a program is 
described with assignment sentences. When talking about physical equations, information is lost with 
this kind of an approach. Modelica, however, is a declarative language using equations instead. The 
equations can be algebraic, differential, or discrete. To use equations means that real-world physical 
objects can be modelled as such in the language; the modeller does not have to consider in which way 
the equations are used which would have to be done when using languages allowing mere assignment. 
The generalization of the equations yields both simpler models and more efficient simulation. [4][5] 

Secondly, most modelling languages are good at only a few technology domains. Modelica, however, 
can be used to model systems of different kinds. Systems such as electrical, mechanical, 
thermodynamic, hydraulic, biological, control, event, real-time, etc. can be modelled and connected to 
each other to construct hybrid models. Moreover, Modelica is well suited for both low and high level 
numerical algorithms [6]. [4] 

Thirdly, Modelica is an object-oriented language with a general class concept. Added with the equation-
based approach it allows creating physically relevant and easy-to-use model components which are 
employed to support hierarchical structuring, better reusability and interoperability of ready-made model 
blocks. In other words, the class concept facilitates reusing and exchanging models and model libraries. 
[4] 

1.1.2. The OpenModelica Environment 

OpenModelica is an open-source environment, the purpose of which is to provide tools to build, compile, 
and simulate models made by using the Modelica language. It is intended to respond to both industrial 
and academic demands. The development and promotion of OpenModelica is supported by the non-
profit organization Open Source Modelica Consortium. [7] [8] 

The OpenModelica system has both short and long-term goals. The short term goals include developing 
an efficient interactive computational environment for the Modelica language and a rather complete 
implementation of the language. The long-term goal is to have a complete reference implementation of 
the Modelica language, including simulation of equation based models and additional facilities in the 
programming environment, as well as convenient facilities for research and experimentation in language 
design or other research activities. However, to achieve the performance and quality of the commercial 
products is not an objective. [6] 

The OpenModelica environment consists of several subsystems, as is shown in Figure 1. Currently, 
these subsystems are the Interactive Session Handler, The Modelica compiler, the Execution and run-
time module, the various model editors, and the Modelica debugger. [6] The most important 
functionalities of these systems are as follows. 
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Figure 1. The architecture of the OpenModelica environment [6] 

The interactive session handler parses and interprets commands for evaluation, simulation etc. The 
Modelica compiler translates Modelica expressions to C code. In addition, it includes a Modelica 
interpreter for interactive usage and constant expression evaluation. The execution and run-time module 
executes compiled binary code from translated expressions and functions as well as simulation code 
from equation based models. The set of model editors, besides providing editing and browsing capability 
of the Modelica models, have several features that make building models easier than with a general 
purpose text editor. The Modelica debugger is still in a somewhat immature state providing debugging 
ability for only certain types of models. [6] 

OpenModelica can be utilized as such to build and simulate Modelica models. In addition, since being 
free software, OpenModelica or parts of it can be integrated to existing systems as plugins or developed 
further to fit better to the target system [6]. For instance, in the Simantics software platform this sort of a 
plugin approach is utilized. The Simantics platform will be further described later on in this document. 

1.2. OPC 

1.2.1. Idea of OPC 

Until the early 1990s, when a process control hardware was to be connected with a software application, 
a driver for that particular piece of hardware had to be written and attached to the software application. 
Then, if the hardware component was to be replaced by a differing component, the driver had to be 
rewritten. On the other hand, if different software application wished to communicate with the piece of 
hardware, corresponding drivers had to be written for each of the applications. OPC was a solution 
presented to this problem. [9] 

OPC is a standards specification which defines a common interface for communication between software 
packages and hardware devices of different kinds. When communicating through the OPC interface, 
there is no longer need to create a driver for each application–device pair. All that needs to be done is to 
create only one driver, which is compatible with the OPC interface, for each software and hardware 
component. In the following of this section, practical aspects of OPC are discussed and analyzed in a 
more detailed fashion as well as the history of OPC is presented. 
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1.2.2. History 

OPC is an open specification being introduced in 1996 by an industrial automation industry task force. 
After the initial release, the OPC Foundation was created to continue the development of the set of 
specifications [10]. The first version of OPC consisted only of what is now called the Data Access 
Specification, hereinafter abbreviated as DA. Since then the number of standards specifications 
completed or in development has increased to nine. 

The term OPC was originally an acronym for OLE for Process Control, where OLE stands for Object 
Linking and Embedding. However, since OPC is nowadays used widely not only in process industry but 
also in discrete manufacturing and due to the fact that the current UA specifications are platform 
independent, the Foundation now calls it open connectivity via open standards. 

The initial purpose of OPC was to allow process control hardware to be used with Windows based 
applications. The OPC technology was build upon the OLE COM (Component Object Model) and DCOM 
(Distributed Component Object Model) technologies developed by Microsoft. These technologies specify 
interfaces that can be used in passing objects between processes which can be implemented in various 
programming languages and may be either located on the same computer or communicating over a 
network connection.  

1.2.3. Basis and Uses 

OPC was created to specify standard interfaces for connection between factory floor devices and 
monitoring and control software applications in the domain of process control and manufacturing 
automation systems. From the beginning, it was meant to be used to transfer real-time data between 
control devices, such as PLCs (programmable logic controller) and DCSs (distributed control system), 
and display clients, such as SCADAs (supervisory control and data acquisition) and HMIs (human 
machine interface). Later the set of specifications was extended to cover the passing of other types of 
data as well. The specifications define a standard set of objects, interfaces and methods which enable 
vendor-independent interoperability between software and hardware [9]. The specification has no 
restrictions concerning either the type or the source of the data. OPC has become the de facto standard 
for industrial integration and process information sharing [11]. [12] 

The OPC technology is based on a server–client architecture. The intended purpose of use of OPC is 
that the software application acts as a client communicating with a separate server application which in 
turn is coupled with the hardware device. The client sends requests to the server which in turn processes 
the request and sends corresponding response back to the client. These requests can be, for example, 
reading values or sending commands. [12] 

As mentioned earlier, traditionally, when a control hardware device was wanted to be connected to a 
software application, a special purpose driver had to be written. Using OPC makes the situation a lot 
simpler: Since there are ready-made server applications compatible with most of commercial hardware 
devices on the market, all that needs to be done is to configure one of such applications to communicate 
with the physical device. After that the software application can communicate with the hardware device 
by acting as an OPC client. 

Figure 2 depicts the situation without OPC. Each of the arrows represents a unique driver written solely 
for the purpose of connecting a certain application to a certain piece of hardware. Even with a system 
this small the solution becomes tangled. In a scope of even a medium-sized control system with some 
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complexity in its hardware devices it becomes obvious that to manage the communication within the 
system becomes rather impossible. 

 
Figure 2. Software applications connecting hardware devices with special purpose drivers [13] 

Figure 3 shows the same system with OPC servers connected to the hardware devices and OPC clients 
to the software applications. The number of pieces of software that has to be written decreases by five 
since each part of the system needs to be connected to only one interface. In addition, since it is not 
unusual to be able to acquire ready-made server application for the hardware devices, the only thing the 
developer needs to do is to implement OPC client behaviour for each application. With the OPC servers 
provided by external vendors, the total amount of work is decreased to implementing the three OPC 
clients and configuring the four OPC servers. 

 
Figure 3. Software applications connecting hardware devices by using OPC [13] 

In real-world systems with hundreds of pieces of software and hardware, other issues arise as well: 
Firstly, the replacing of a single piece of either software or hardware becomes rather impossible. 
Secondly, it is likely that two or more applications want to access the resources of a same hardware 
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device simultaneously. OPC provides a solution for both of these problems: To replace a part of the 
system by a corresponding part, even made by another manufacturer, is a trivial procedure. With an 
OPC server being fully in charge of controlling a device, no synchronization issues between clients will 
emerge; the server can simultaneously serve requests of many clients using the device. 

An example of a real-world application using OPC could be as follows is depicted in Figure 4: A PLC 
controlling an assembly line is configured by using external tools. It is likely that there are commercial 
OPC servers available for the PLC device used. Hence, to gain real-time control over the system, a 
commercial SCADA or HMI system with an OPC client interface is acquired. After interconnecting the 
systems, all that needs to be done to pass information from the process to the SCADA system is to 
configure the OPC interface to give meanings for the signals from the PLC. All the data transmission 
related problems are solved by the commercial products and do not need to be taken care of by the end 
user. After the OPC connection is established, the SCADA system human machine interface can be 
designed and the system is ready to use. 

 
Figure 4. A mobile phone is finished off on an assembly line controlled by a PLC. The PLC receives 

its instructions from the OPC server. The SCADA system is connected to the OPC server through the 
OPC interface, thus being in control of the elevator. 

Besides being able to solve the original driver problem, the OPC specification has been developed 
further to include other features. The six other completed specifications include support for the following: 
alarms and event based communication, specialized interface for batch processes, server–server 
architectures, accessing history data, security, and communication based on XML (Extensible Markup 
Language). The two unfinished specifications add support for more complicated data types and extended 
use of commands. [9] 
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1.2.4. Strengths of OPC 

In this subsection, the strengths of OPC are summarized and analyzed from a practical view. In the 
following, three different viewpoints are presented: one of a software engineer, one of a hardware 
manufacturer, and one of a customer purchasing the software and hardware components for building a 
control system. Some benefits common to all are listed in the final paragraph. 

The use of OPC decreases the workload of a software engineer in several phases of the project: Since 
OPC is an open specification, anyone is allowed and able to create an OPC client or server. Moreover, 
no effort is needed to design the communication protocols. Implementation is also easier by reusing 
ready-made server applications. Even the maintenance phase is simpler, because even if the hardware 
component was upgraded, few changes would have to be done to the software. 

The most important advantage for a hardware manufacturer is that to serve most of the customers, only 
one common interface has to be supported. Thus little software related work needs to be done for an 
end product and the focus of product development can be aimed at the core competences of the 
company. 

OPC gives flexibility to customers building a system out of both software and hardware components on 
the market. Because OPC is usually well supported throughout the scale of selectable software and 
hardware components, the interoperability of different components from different vendors is achieved. 
Customers can therefore switch between hardware devices, replace damaged devices, or upgrade them, 
in both the constructing and the maintaining phase. A software update or changing to a completely 
different software application is also possible with ease. 

Be it a hardware manufacturer, a software engineer, or a customer, the following benefits apply: Using a 
common interface which the software and hardware can communicate through, both the hardware 
manufacturer and the software engineer are independent of each other. This also gives the customer the 
independency to choose between the different components solely based on their core properties instead 
of on the certain hardware or software they support. Another thing is that OPC is widely adopted and 
used. Thereby the performance and functioning of OPC has been verified in a wide diversity of real world 
applications which has enabled improving the properties and quality of the specifications. 

1.2.5. Weaknesses of OPC 

It is obvious that OPC is not a solution to communication in each and every technical system; for 
instance, small systems with special purpose components may not get advantage from an additional 
middleware component. Nevertheless, the specification has also some definite flaws, the most 
remarkable of which are described further on. 

Many of the weaknesses of OPC are related to its origins: the OPC specification was developed in mid-
’90s, when the field of technical systems was rather different. The improvement in computational 
performance and the development of network and communication technologies has given new prospects 
for industries but on the other hand has created new requirements for technologies used to handle the 
situation. 

The specification was originally built for simple message passing between software applications and 
process control hardware. After that, the specifications have been extended piece by piece to make 
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possible to use it with various different kinds of systems and with more suited communication methods. 
The outcome has therefore become somewhat fragmented. [14] 

The fragmentation of the specification has led to a situation, where the different parts of the specification 
had no connections to each other; in order to utilize different parts of the specification, an individual 
server for each of the parts had to be created. What it means is that, for instance, a value read from a 
hardware device through the Data Access Specification was not in any way connected with the very 
same value read through the Historical Data Access Specification. [14] Another manifestation of the 
fragmentation is that with different functionalities divided between different servers, the address space 
models and data hierarchies can be different in different servers [15]. 

Despite the further development, the OPC specifications can still be used mainly for low level 
communication only; the ability for a comprehensive control over the whole automation system from the 
plant device level to the ERP (enterprise resource planning) level is managed poorly. Hence, with OPC 
in use on lower levels, additional protocols have to be utilized to pass information to, from, and between 
higher levels. 

Even though there is a part in OPC specification that allows secure connections, the Microsoft DCOM 
technology, which the specification is based on, provides no support for security whatsoever. Hence the 
level of security cannot be considered sufficient to meet the needs of the application area of OPC [16]. 

There is even a bigger issue in the original specification being based on DCOM technology. Even though 
OPC is an open specification, the base technology practically determines that a Windows operating 
system has to be used [11]. In addition to the operating system constraints, the base technology with a 
treelike data hierarchy is becoming obsolete [15]. The users have also found DCOM technology to be 
difficult to use [11]. In addition, the DCOM technology is proprietary and thus its source code cannot be 
accessed; its defects cannot be fixed and to debug the whole system becomes rather difficult. 

A solution for many if not all of the weaknesses listed above is presented by the OPC Foundation. This 
solution is called OPC Unified Architecture. 

1.3. OPC Unified Architecture 

OPC Unified Architecture, abbreviated as OPC UA or UA, is a specification which on one hand is based 
on the original OPC specification but on the other hand differs substantially from it. UA is not a new 
supplemental part for the already fragmented OPC specification but a unifying specification based on a 
new, different architecture. It combines the functionalities of the different parts of OPC under one 
specification adding new features as well. UA is intended to be used wherever OPC can be used but 
also in domains not so well suited for OPC. Since many basic concepts of OPC UA are similar to OPC, 
the focus of this section is on the main differences. 

1.3.1. Origins of OPC UA 

The development of OPC UA started in 2002 and the first complete version was released four years later 
in 2006. With the base DCOM technology becoming obsolete and with even Microsoft endorsing the use 
of cross-platform capable solutions, the goal of the development was set on creating a completely new 
specification based on different technologies than what was used in OPC. The purpose was to create a 
specification which would combine all the functionalities of the regular OPC while adding new features as 
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well [17]. Whereas the regular OPC specification consists of nine separate parts only loosely connected 
to each other, UA, even though divided into separate parts, too, is an entity in which all of the parts work 
not in separation but as a unity [18].  

The main reason to create a completely new specification from scratch was to improve the original OPC 
specification by correcting its deficiencies presented in the previous section; building upon the base 
technology of the original OPC would not have made this possible. As the development process was to 
be started out of nothing in any case, other aspects could be taken into account as well: the base 
technology was chosen to enable forward compatibility with future technologies and adding new 
features. 

The major weak points to be improved were as follows: The fragmentation issue was to be solved to 
achieve better quality for the specification and to allow developing improved properties. Secondly, the 
Windows operating system bondage was to be cut to achieve genuine platform independence which 
would enable the specification to be used in a broader scope of platforms. Thirdly, the security was given 
a high priority in the designing of the specification to allow communication in networked systems. 

1.3.2. Technical Differences between OPC and OPC UA 

Even though the higher level functionalities of OPC UA are similar to the equivalents of OPC, the 
technical differences beneath the surface are substantial. In this subsection, the differences between 
OPC and OPC UA are examined from a more technical point of view and the practices to achieve the 
goals of the development are presented. What benefits result for a user is discussed in the next 
subsection. 

Instead of the DCOM technology, UA is based on SOA (service oriented approach) paradigm. It means 
that the UA server exposes all of its functionalities as sets of services which can be used by UA clients. 
The specification defines two different ways of communication between a server and a client: XML WS 
(Web services), which is a widely used standard technology in communication between computers, and 
UA Native, a special purpose binary representation. The former enables communication with any system 
that can communicate using Web services, the latter enhances the speed of the connection at the 
expense of flexibility. [11] 

The data structure has been completely reformed to allow a lot richer definition of the system. The main 
differences are as follows. Instead of a treelike structure in OPC, in the information models of UA the 
nodes form a full mesh network. The amount of metadata has increased vastly; there is a great amount 
of structural, semantic, and diagnosis data describing the actual measurement data [11]. UA has a class 
concept supported: real world items can be modelled as instances of classes (also known as objects), a 
similar approach commonplace in object-oriented programming languages. This allows custom types to 
be defined, too, since even real world objects such as actuators and sensors can be types [14]. A more 
detailed view of the data structure of OPC UA is discussed in Section 3.1. 

UA emphasizes security. Unlike in OPC, in UA the security mechanisms are a fixed part of the 
communication. In UA, security, reliability, and AAA (authentication, authorization, and accounting) are 
fully integrated into the specification. The level of security that is provided is sufficient to enable safe use 
over an internet connection. With the security services implemented in the communication protocol, there 
is no need for an application programmer to pay attention to it. [11] Nevertheless, for systems with tight 
performance requirements, it is still possible to switch the security off [19]. 
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UA introduces several important fixes to OPC, many of which are related to reliability issues. In addition, 
a lot of useful features have been added. Other new features than what are discussed above have little 
importance in the scope of this research theme, though. 

1.3.3. Advantages and Uses 

The technical differences allow UA to be used in a broader field of application areas than OPC. In this 
subsection, the advantages of UA are discussed from a more practical view. 

A major benefit of UA compared with OPC is its platform independence. The removal of the operating 
system limitation has enabled UA to be used in various platforms. The SOA architecture provides 
interoperability among many kinds of devices [11]. With a wide diversity of devices such as PLCs, 
intelligent modules, and even some embedded devices supporting Web services, the potential 
installation base of UA servers is a lot wider than of OPC servers [20]. UA can thereby be used in 
connecting not only a hardware device to a software application, but also a software application to 
another software application or even a hardware device to another hardware device. 

Another major advantage of OPC UA is its capability to integrate an overall information system of a 
company both horizontally and vertically, the latter being rather impracticable by using OPC. The 
capability is due to the information model of UA containing not only the values of the variables of the 
system but also a large amount of metadata describing the variables and their interdependencies in the 
system. Hence the information acquired from the factory floor level can be utilized with ease even by 
higher level systems as well. With Web services as the basis of communication, this allows the overall 
information system of the factory to be integrated by using merely the OPC UA specification as the 
means of communication. This means that there would be a connection all the way from the factory floor 
devices through the process control systems (SCADA, HMI) and up to the process and business 
management systems (ERP), or even to systems in partner companies. [11] 

An example of a company information system communicating via the OPC UA interfaces is shown in 
Figure 5. The PLCs, DCSs, and such controlling the factory floor devices are integrated together 
horizontally with HMI and SCADA systems using the Plant Floor Network. The Plant Floor Network is 
integrated vertically to Operations Network through a UA server, the sole purpose of which is to combine 
the functionalities available for upper level systems, such as MES (manufacturing execution system), 
and expose them through the OPC UA interface. The Operations Network is in turn connected to the 
Corporate Network via another UA server in order to provide the ERP systems, as well as possible 
systems beyond an internet connection, with the desired functionalities. 

The platform independence and the elaborate information model alone do not assure safe usage over 
networks. A company’s data system is often distributed to the outside of a factory, too, and may be 
controlled through an internet connection. The use of Web services with efficient security procedures 
allows UA to be used over network connections as well [11]. Hence the connection between field devices 
and ERP systems can be established using already existing multipurpose physical data connections. 

OPC UA solves a few DCOM technology related issues making the work of an application programmer 
easier. Since there are no closed interfaces, the application programmer has a better control over the 
system and the debugging of the system is easier. Naturally the defects and inconveniences of 
configuration of the DCOM interface give no trouble either with UA. 
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Figure 5. A typical information system of a company integrated both horizontally and vertically with 

OPC UA 

OPC UA enhances the reliability of connection as well. For example, a lost connection can be detected a 
lot earlier with UA than with OPC and a connection failure can be recovered from by using buffers and 
resends of data. [11] 

The amount of new features allows UA to be used in a much wider area of applications. However, one of 
the goals in the development process of UA was to retain all of the functionalities of the original OPC 
[17]. Hence OPC UA can be used practically wherever OPC can be used. As there is already a broad 
adopter base using the regular OPC, it is also crucially important for the new specification that the 
migration to the new specification is made easy. That is why the OPC Foundation has assured backward 
compatibility between the two specifications. 

There are two possible ways to equip an OPC capable system with the OPC UA communication 
methods: One solution is to create a UA server which is directly connected to the control system 
interfaces. The other solution is to use a middleware to adapt the already existing OPC interface to 
behave like UA [11]. The former option is naturally the more time-consuming way. However, in order to 
use fully all the features of UA, such an approach has to be chosen [14]. The latter option is the easy 
way since the OPC Foundation provides wrappers and proxies; using middleware does not require any 
changes to the existing server. 
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1.3.4. Disadvantages and Criticism 

Compared to the regular OPC there are still some disadvantages in OPC UA. Many of them are practical 
aspects which are due to the novelty and the extent of the new specification. One of the biggest 
concerns of the new technology, though, is the performance. The main performance issues concern data 
transmission and computational requirements. 

Transfer rates of data networks are constantly increasing but so are the system requirements. With text-
based XML messages used in transforming information, the majority of the bandwidth is gone wasted 
from the information throughput viewpoint. Thus transferring a certain amount of information is 
substantially slower than with the regular OPC; with large quantities of data, the regular OPC can be 
roughly 20 times faster [21]. To remedy the slow speed of information, the UA Native binary 
representation can be used. It provides a lot faster communication; the speed is nearly the same if not 
better than with the DCOM technology [22]. Since the Web services technology is supported by many of 
hardware devices and software applications on the market, the use of the binary representation 
decreases interoperability and additional work needs to be done in order to interpret the binary 
representation. Hence it is at its best in applications with high information transfer requirements. 

The other performance issue is security. The practice has shown that the security functions require a 
huge amount of processor time. The security can be turned off but then other practices need to be used 
to ensure the trustworthiness of the connection.  

For an application programmer, the new specification gives additional workload. Because of the extent 
and elaborateness of the specification, a lot of work has to be done even when creating small 
applications [15]. Even though the whole interface does not have to be implemented, the amount of work 
to achieve at least some minimal functionality is much greater than with OPC. The foundation offers help 
by providing communication stack reference implementations in C, C#, and Java languages and sample 
client and server applications for C#. However, to build a software application upon a mere 
communication stack is very time-consuming. If C, C++, or Java is chosen as the language, using a 
commercial product to implement the required service sets is advisable. 

Another issue is the installed base. Since UA is a fairly recent specification, there are not yet as many 
products supporting UA than OPC. Thus the interoperability cannot be fully utilized. There is no 
guarantee that UA will gain a similar status than what its predecessor has and only time will tell whether 
the new features will prove to be necessary enough that users of old systems will change over from OPC 
to UA and new systems will be designed with OPC UA as the means of communication. 

1.4. Motivation 

Modelling and simulation have become essential tools in developing today’s technical systems. They can 
be used in designing and optimizing, virtual prototyping, and verifying the system, to name only a few. 
However, to realize the full potential of modelling in both the development and the use of a technical 
system, a link between the model and the system is to be established. 

Incorporating OPC and OPC UA interfaces into OpenModelica makes possible to utilize the information 
provided by the OpenModelica simulation in the controlling of the corresponding real-world system. 
Since OPC UA can be used not only with hardware devices but also with other software components, 
incorporating the UA interface would enable OpenModelica to be connected to different kinds of software 
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applications as well. These applications can be used, for example, to monitor or to control the simulation. 
An example of how the UA interface connection can be used in two different ways is shown in Figure 6.  

 
Figure 6. Two different ways to utilize OpenModelica through the OPC UA interface* 

The first example of how to use the UA interface is to connect the UA server of OpenModelica to a 
software application capable of acting as an OPC UA client. The software application can be used to 
monitor and to control the simulation. In addition, the data can be used in whatever way the user decides 
and since the data from OpenModelica has a defined form, it can be further processed by the 
application. 

The second example of utilizing the simulation model created and run by OpenModelica is to use it in 
model-based control. In this case, the overall control system consists of field devices, such as various 
kinds of sensors and actuators, a PLC, which the field devices are connected to, and OpenModelica 
itself. The PLC acts like an OPC UA client and since there is an OPC UA server connected to 
OpenModelica, the PLC can communicate with the simulation model. The PLC can, for example, read 
the value of any variable in the simulation, set parameter values, and run and interrupt the simulation. In 
the scope of this example, the most important operation would be to run the simulation one time-step 
forward. This would allow the PLC to give control signals to the actuators on each time-step based on 
the simulation result, inputs from the sensors, and pre-defined control laws. 

In Chapter 2, the goals, including the minor ones, of the project are examined. A few additional 
motivations for the work are presented as well.  

                                                   
 
* A notable difference to Figure 5 is that the PLC device acts like an OPC UA client instead of a server. However, even when not 

explicitly depicted in Figure 6, the PLC can simultaneously act as a server as well in order to receive commands from higher 
level systems. 
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2. Goal 

The main task of this project is to design a method for OpenModelica to communicate through the OPC 
UA interface. The target is to enable the communication method to be used as a part of even fairly large 
systems containing a great amount of variable information to be processed and transferred. Hence the 
most important quality attribute of the implementation is computational efficiency. The project has also a 
few other goals which can be achieved relatively easily by reusing parts of this work in the advantage of 
other software systems. In this chapter, the objectives of the project as well as some background 
information about those relating software systems are presented. 

At present, OpenModelica has an I/O module called OMI (OpenModelica Interactive). However, the 
adding of the UA interface would vastly increase the I/O capabilities of OpenModelica. For instance, it 
would enable plug-and-play standard connectivity, provide a wider set of features like security, and 
improve performance. The UA interface is intended to not use the OMI interface but to be implemented 
alongside of it. 

Once the UA interface is successfully configured to OpenModelica, it can be used in any system in which 
OpenModelica is embedded. The big picture of this project includes that OpenModelica with the UA 
interface is used as a plugin in the Simantics platform developed by VTT Technical Research Centre of 
Finland. Simantics is a simulation environment which consists of various simulators as plugins within an 
Eclipse based graphical user interface, the integration of the different solvers being a major strength of 
the platform. [23] 

One of the goals of the project is to have a UA connectivity added to the Apros software developed by 
VTT in collaboration with Fortum, a Finnish energy company. Apros software is multifunctional software 
for modelling and dynamic simulation of processes and different power plants. It can be used for, for 
example, safety analysis, process design, training or automation testing. [24] To enable connecting the 
UA interface to Apros, the Adda (Advanced data access) interface [25] supported by Apros is to be used. 
Hence a new interface layer is added in between OpenModelica and the OPC UA interface. The Adda 
interface will be further analyzed in Section 3.3. 

Another goal of the project, besides developing the OPC UA interface to OpenModelica, is to enable 
OpenModelica to be used through the regular OPC as well. Even when this can be achieved using 
wrappers, another solution is proposed. OPC COM DA Kit and OPC XML DA Kit are OPC 
implementations for the Adda interface built to enable OPC connectivity in Apros. By utilizing the OPC 
Kits with the Adda interface, no extra work needs to be done to achieve OPC compatibility. Furthermore, 
by using the Adda interface, the OPC UA layer can be bypassed and thus excess computational 
overhead can be avoided.  

Figure 7 depicts a completed version of the previously shown picture now including the new interface 
layer as well as new peripherals: In the picture, the Adda interface is inserted between the OPC UA 
server and OpenModelica. The two components, Apros and the OPC wrapper, are connected to the 
Adda interface, thus enabling both the PLC supporting the regular OPC to be connected to 
OpenModelica and Apros to be connected to the OPC UA interface. 
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Figure 7. Apros software is connected to the OPC UA interface and the OPC interface is added to 

OpenModelica. 
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3. Interface Descriptions 

In this chapter, the functionalities provided by the interfaces are discussed more deeply yet still from a 
practical perspective. An overall view of each interface is presented as well as the key concepts are 
explained where necessary. The main focus is on the functionalities most important for this project. The 
matters concerning the differences of the interfaces and how they are connected together are covered 
more thoroughly later on in Chapters 4 and 5. However, certain comparisons between the interfaces are 
made already in this chapter. 

3.1. OPC UA 

3.1.1. Address Space Model 

For a better understanding of the functionalities the OPC UA interface provides, it is good to have some 
basic knowledge of the address space model of UA. An OPC UA server contains an address space 
model which, when properly configured, is a representation of the real system behind. The precise 
definition of the address space model can be found in the Specification Part 3: Address Space Model 
[26]. 

Within the OPC UA address space model, there is a lot of metadata describing the properties of various 
real-world system items and phenomena. As briefly mentioned before, a user can create self-made types 
to define the items in the system. These types define the general properties of the items they are 
associated with, not any specific data of a certain item. As an example, a ThermometerType type could 
be created to describe what a temperature sensor object is and how it is linked with other parts of the 
system. 

The address space of UA consists of nodes. Each node belongs to a node class (Variable, Object, 
Method, etc.) specialized from the BaseNode class, as is depicted in Figure 8. For example, the 
ThermometerType type definition presented above would belong to the ObjectType node class since it 
describes the properties of an object. Based on the type definition, a thermometer object, belonging to 
the Object node class, can be instantiated to stand for a temperature sensor in a real-world system. 

Nodes are in relation to other nodes via references. In this way, different nodes can be linked together in 
the address space model in a similar fashion to how their counterparts are connected in real world. For 
example, a thermometer object could be connected to its temperature variable. The relation could be 
defined as the temperature being a component of the thermometer. 

Nodes have attributes. Attributes serve as the descriptions of a given node. The use of attributes is 
strictly fixed in each of the original node classes’ definitions thus preventing the user from creating or 
using custom attributes. For example, the temperature of a thermometer has a Value attribute (each 
variable has a Value attribute) which contains a floating point number, such as 22.0, expressing the 
result of the measurement. 
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Figure 8. A node in the OPC UA address space model belongs to one of the node classes and has a 

fixed set of attributes depending on the node class. [14] 

In Figure 9 is shown a slightly reduced view of what the address space of the UA server in the 
thermometer example could look like. As can be seen, the address space forms a non-treelike graph 
since loops in references are allowed. The address space has a root node, marked with /, of which type 
definition is FolderType; such nodes can be called folders. The root node organizes Objects and Types 
of which type definitions are also FolderType; hence the root folder has two subfolders. In the Types 
folder are gathered all the type information needed to describe the system, including definitions for 
folders, thermometers, and temperatures. The Objects folder contains the objects and the variables of 
the system, in this example there is only one object, namely thermometer, which in turn has a 
HasComponent reference to temperature. Both thermometer and temperature have references to their 
definitions organized by the Types folder. The reading of thermometer is found in the Value attribute of 
temperature. Even when not in full view, all the other nodes as well have a defined set of attributes 
included. 

Even when the data structure of the address space is a graph, it can be flattened to a tree. Hence the 
address space of UA can be used to model treelike structures as well as be viewed by software 
understanding merely treelike structures. The discussed thermometer example, for instance, can be 
flattened to a tree by making copies of such structures which more than one reference is pointing to. For 
example, the TemperatureType type is referenced by both temperature and ThermometerType nodes. 
Hence two TemperatureType types need to be created, one for each node to be referenced by. 
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Figure 9. The address space of the thermometer example 

3.1.2. Services 

The functionalities that OPC UA provides are called services. The services are grouped into different 
service sets. The services are described in more detail from an abstract point of view in OPC UA 
specification Part 4: Services [27]. In the following, the service sets are grouped further to correspond 
better to the functionalities shown to end product users. 

 The Discovery, the SecureChannel, and the Session service sets are used in establishing and 
maintaining the communication channel. The Discovery service set is used to get information 
about a server, the SecureChannel service set to open the connection between a client and a 
server, and the Session service set to handle the connection in the context of a session. These 
service sets are not discussed further. 

 The View and the Query service sets can be used to browse the address space. By using these 
services the objects, the variables, the methods, their relationships, and what attributes they 
have can be discovered. Using these services is somewhat analogous to browsing a file system 
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of an operating system, the difference being that in this case the data system is a graph instead 
of a tree. The two service sets enable, besides acquiring the real-time state of the address 
space, accessing an address space of a certain point in time in history. 

 The Attribute service set allows reading and writing the values of attributes, including the Value 
attribute. The service set allows an access to history of attributes and events, too. 

 The Method service set allows calling methods of objects. The most important methods in the 
scope of this project are starting, interrupting, and continuing the simulation. 

 The MonitoredItem and the Subscription service sets are responsible for monitoring the values of 
attributes. The monitoring can be based on either polling or events. A basic use case in the 
polling-based approach is that the UA server transmits the value of the item being monitored at a 
user-defined interval. In an event-based approach the value of the item being monitored is 
transmitted to the client when a big enough change in the value has occurred. Moreover, for both 
approaches there are a lot of different ways of how to use the service sets; these different modes 
of operation are not described further in this report. 

 The NodeManagement service set provides tools for adding and deleting items and references 
between them. In the scope of this project, this feature is not used and shall thus not be 
discussed further. 

3.2. OPC 

Many of the features and qualities of OPC are similar to those of OPC UA from a practical viewpoint. 
Thus only the main differences between the interfaces are presented in this section. 

The address space model of OPC is somewhat different than of UA and it is not discussed thoroughly. 
The main difference is that whereas the address space of UA can form a full mesh network consisting of 
objects, variables, and so on, OPC has a hierarchical treelike structure consisting of folders, items, and 
properties. Additionally, an OPC client has to divide the items it needs to access into groups through 
which all of the data transmission is managed. As already mentioned before, using metadata in OPC is 
supported to a lesser degree than in UA, too. 

The functionalities provided by OPC are nearly equivalent to what is provided by UA. The main 
differences are the lacking of functionality similar to what is provided by the NodeManagement service 
set and the dissimilar procedures related to opening and maintaining a connection. The former makes 
reforming of the model impossible through the OPC interface and the latter is shown to the end user as 
different properties of connection. 

A notable practical aspect of the OPC interface in this scope of this project is that even when there is a 
support for basically all of the essential operations in the OPC specification itself, the OPC Kits, the OPC 
wrapper software used in this project, implement only two of the OPC specifications: Data Access and 
XML-DA. With this limitation, to try to use certain functionalities, especially method calls and events, 
through the OPC interface is not feasible. To patch up the problem, the wrapper software is equipped 
with an additional proprietary interface for simulation control. This interface provides functions for 
controlling the execution of the simulation and adds support for events. The simulation control interface 
is not discussed further. 
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3.3. Adda 

As mentioned earlier, Adda is the interface used in the Apros software for external I/O. The Adda 
interface is also utilized by the OPC Kits thus enabling OPC connectivity in Apros. Furthermore, by using 
this software, any application with the ability to communicate through the Adda interface can be made 
OPC compatible as well. 

The Adda interface is a relatively small definition being merely a collection of functions which a software 
application can use to communicate with simulator software and vice versa. Adda defines a couple of 
very basic data structures, but otherwise no specific communication protocols are defined. Adda does 
not thereby specify as comprehensive a communication solution as OPC. 

The Adda interface is developed for communication quite similar to what can be achieved by using OPC 
DA interface. In addition, a set of commands is added for simulation control purposes. A more detailed 
view of the Adda interface is found in its technical report [25]. 

The data structure of Adda has a lot in common with the regular OPC; Adda as well can be used to 
process treelike structures only. The database behind the interface consists of branches and items. A file 
system analogue for a branch is a folder and for an item a file. The sole functionality of the branches is 
to organize items. An item consists of the value of that item and some metadata describing it. 

The Adda interface consists of functions of four different kinds: 

 The first set of functions is the utility functions, the main purpose of which is to initiate and 
terminate the connection.  

 The second set of functions is for browsing the underlying database: the functions provide a 
similar means of scanning the database than what is achieved by using OPC.  

 The third set of functions is for accessing data: to be exact, these functions allow merely writing 
the data to the simulator as reading a value is executed by accessing the data directly by using a 
pointer to the corresponding data item inside the simulator. The data access functions also 
incorporate functions used in the reverse direction: the simulator can inform of a change in the 
model or in values of the variables in communication.  

 The fourth set of functions is for simulation control purposes: the means to start, interrupt, and 
continue are provided among other functionalities. This set of functions adds general support for 
events, too. 

Despite its differences to OPC UA, the Adda interface can be fitted in a relatively straightforward manner 
between the OPC UA interface and OpenModelica. When the OpenModelica simulation is running, the 
interconnections in the model can be expressed using a tree. Thereby the Adda interface gives no 
constraints in this respect. In spite of Adda providing only a small amount of metadata, it is still sufficient 
for the relatively modest demands of OpenModelica. Thus using Adda does not give trouble in this 
respect either. However, Adda sets certain limitations related to implementation details and to what 
features of the OPC UA specification can be used. These limitations will be further discussed later on 
where relevant. 
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3.4. OMI 

The OMI interface is the means of I/O at the moment in OpenModelica. However, the interface is rather 
simple enabling only the most basic communication. [28] The use of OMI as a part of the project is not 
encouraged because of the reasons to follow. 

After the initiation sequence, the OMI interface provides the following functionalities: the simulation can 
be started, interrupted, stopped, and rewound to a specific time; parameter values of the simulation can 
be changed; and the group of parameters that are to be monitored can be altered. Other than that, the 
OMI sends the values of the parameters that are to be monitored to the client after every simulation step. 
The abovementioned are all of the functionalities provided by OMI, thus the interface is very limited. 

The data structure in OMI is not visible through OMI. The database behind the interface is shown as a 
tree like in OPC and Adda. However, it is impossible to navigate in the data structure by using OMI. 
Hence other means of acquiring data from behind OMI have to be used anyway. The use of metadata in 
OMI is completely non-existing. Hence using OMI as the only way of providing information from the 
simulation is insufficient. 

Another reason, besides the lacking of features and metadata, not to use OMI as a link between 
OpenModelica and Adda is that it would lead to a system with poor performance: the communication is 
solely based on strings of characters. For example, for a transmission of an integer value, the value 
must be first converted to a string, transferred to Adda, and converted back to an integer again. 
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4. Different Architectural Approaches 

To solve the problem of incorporating the OPC UA interface into OpenModelica, two different 
architectural approaches were considered and are described in this chapter. As mentioned earlier, 
regardless of the architectural choice, a server–client architecture is used: OpenModelica acts as a 
server and the applications contacting with it as clients. 

The first alternative solution is to integrate the UA server as a part of OpenModelica. The second 
alternative solution is to let the OPC UA server act independently from OpenModelica with having its 
own means of communicating with OpenModelica. Among other things, the different solutions offer the 
following mutually exclusive properties: the former enables performance in the shape of high 
computational efficiency whereas the latter allows flexibility to modify the simulation model without 
disconnecting the UA server from clients. A closer look at the different architectural options is taken in 
the following sections where the pros and cons of the solutions are weighed up as well. In Chapter 5, the 
different solutions are compared and the details concerning the implementation of the chosen approach 
are discussed further. 

4.1. Static Solution 

4.1.1. Basis 

The first alternative architectural approach is the so called static solution. In the static solution the UA 
server capability is added to OpenModelica so that it becomes a part of the compiled simulation model 
executable, hence disallowing changing the model while a UA server is running. With this kind of an 
approach, the structure of the implementation becomes rather straightforward.  

As making changes to the model would yield to recompiling, the UA server included in the model would 
need to be recompiled along and thus restarted. However, coupling the UA server tightly to 
OpenModelica brings a couple of benefits: Firstly, tight couplings enable high efficiency. Secondly, the 
system is rather simple; hence the risks of different kinds of failures in developing such a system are 
quite low.  

In the later of this section, two different implementation methods are presented: a straightforward 
implementation with no intermediate conversions and an implementation with the Adda interface layer 
used in between the UA interface and OpenModelica. Even when all of the goals set for this project 
cannot be met by using the straightforward approach alone, it is presented shortly as a baseline for 
comparisons of different solution details. 

4.1.2. Straightforward Approach 

The OPC UA interface can be implemented to OpenModelica in a straightforward manner. It means that 
the UA server is connected straight to the real-time data inside the OpenModelica simulation without an 
additional interface in between. However, there would still be separate address spaces in OpenModelica 
and the UA server. Alternative design choices can be utilized to manage the transfer of data between the 
two. 

The UA server could act in a couple of different ways, as is shown in Figure 10. The first alternative is 
that when a certain value is to be obtained from the simulation, the UA server polls the data and makes a 
copy of the value for its own address space. The second alternative is that the address space of the UA 
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server contains merely pointers to the values in the simulation instead of duplicates. In that case, when a 
value is requested by a client, no additional copying needs to be done as the UA server can read the 
requested value straight from the simulation and send it to the client. The third alternative is that when a 
simulation step has finished, OpenModelica could write the values that have changed straight to the 
address space of the UA server where they can be requested from by a UA client at any time. 

 
Figure 10. The three methods for passing data from OpenModelica simulation to the OPC UA interface 

Using this straightforward approach would not give additional constraints neither to the implementation 
nor to the whole system. Thus a variety of implementation techniques can be considered and the most 
fitted opted for. In addition, if new features are desired in the future, only the OPC UA specification will 
set the limits. The performance of the implementation would also not be limited in any way since no extra 
work is executed by the application. 

4.1.3. Implementation through Adda 

As is depicted in Figure 11, a slightly more complex way than the straightforward implementation would 
be to connect the UA server to OpenModelica through the Adda interface. In this approach, to acquire 
the desired data out of the simulation, the OPC UA server is created on top of the OPC UA 
communication stack; it implements the services defined in the OPC UA specifications by transforming 
client requests to commands available in the Adda interface. The OpenModelica frontend is created to 
implement these Adda commands. The call-back and other functions which are called from the simulator 
are implemented in the OPC UA server. In Figure 11, likewise in the following pictures depicting the 
dynamic implementations, the boxes left uncoloured represent the parts that need to be implemented. 
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Figure 11. The static solution; both OpenModelica and Apros incorporate an OPC UA server as well 

as are connected to OPC DA, OPC XML-DA, and Simulation Control interfaces through the OPC Kits. † 

The including of the Adda interface allows broader interoperability, as mentioned in Chapter 2: Besides 
through the OPC UA interface, OpenModelica can communicate through OPC DA and OPC XML-DA 
interfaces in a less computationally intensive manner than what would be possible by using wrapper 
software. Moreover, interconnecting OPC UA to Adda makes possible the Apros system to be controlled 
through the OPC UA interface. Naturally, using Adda has a couple of threats to the system performance 
as well as some clear downsides. The most noteworthy of these threats and downsides are discussed in 
the following. 

First of all, the Adda interface is strongly based on the OPC DA interface which, when it comes to the 
technical details, differs quite significantly from OPC UA interfaces. Hence, when mapping the 
functionalities between these two interfaces, certain difficulties occur and rather meaningless functions 
from the UA server point of view need to be executed. 

A layer of abstraction slows down the system a certain amount. The Adda is, however, a very light-
weight interface. Since Adda enforces no additional copying of values or using of complex data 
structures, to use it is not too much more processor intensive compared with the aforementioned 
straightforward solution. Hence the influence that Adda has on the performance of the system is most 
likely a small. 

Since the Adda interface provides little support to represent metadata, it gives limitations to utilizing the 
structural representation of OpenModelica. Thus, for instance, the class information about the objects in 
the model cannot be transferred via Adda. 

                                                   
 
† To be precise, the Adda interface provides no functions to be called from software applications connected to the simulator 

software. Instead, Adda provides registered functions that are called from the simulator at the start of the program execution. 
These registered functions are used to relay pointers to the simulator functions that are called from software application. 
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As a demo implementation using Adda or a comparable interface is not completely finished, all of the 
points above cannot be either proven or disproven. However, since Adda is not too large a specification, 
it can be analyzed in a fairly comprehensive manner and therefore there is little risk that any surprising 
obstacles in the development are to appear. 

4.2. Dynamic Solution 

4.2.1. Basis 

The other implementation approach would be not to include the OPC UA server to the compiled 
OpenModelica simulation executable but to implement it as a stand-alone entity. With this kind of an 
approach, the UA server would have to be created only once and thus a new server would not have to 
be regenerated every time the model is changed. This would allow the model to be modified while the 
UA server exposing the simulation model is still connected to its clients. As there are quite a lot of 
unknown factors in the details of the implementation, to draw definite conclusions concerning the main 
characteristics of the solution is somewhat difficult. Hence, unlike in the case of analyzing the static 
solution, in here certain assumptions have to be made and different possible scenarios contemplated. 

An example situation where the dynamic solution is needed is as follows: A designer is constructing a 
model needed in a model-based control system by using an OpenModelica environment of some sort. 
Simultaneously with the model construction phase, the model is wanted to be simulated while in 
connection with other systems, such as other models or simulations in other applications, other 
applications controlling or monitoring the simulation, or even a real-world system. With a dynamic 
solution, the other systems can access the data within the simulation in the model construction phase 
without having to establish the connection to the OPC UA server all over again each time the model is 
altered. 

As the OPC UA server is not compiled along with the model, it will not have to be restarted whenever the 
model is altered. Instead, when a model change occurs, only the connection between the old model and 
the UA server is cut and the connection to the new model is established. The UA server is informed 
about the change by OpenModelica after which the UA server can in turn notify its clients. 

Compared with the static solution, the dynamic implementation will introduce an additional step on the 
communication path from OpenModelica to the UA server: a piece of software, hereinafter called the 
OPC UA frontend, is to be created to handle the communication between the OPC UA server and 
OpenModelica simulations using communication methods of some sort. The main difference of the new 
OPC UA frontend compared with the frontend of the static solution is that it uses dynamic means of 
communication with OpenModelica simulations thus allowing model changes. In detail this means that 
when a change occurs in the model, that is a model is replaced by another one, the frontend replaces 
the connections to the deleted model by respective connections to the newly created one. As an 
example, if the model is replaced by an identical model but with one component removed, the frontend 
changes the existing connections to point to the corresponding components within the new simulation, 
excluding of course the connections to the deleted component. Once the connection change is done, the 
frontend shall inform the UA server about the model change, after which the UA server in turn informs its 
clients. A client connected to the UA server will only need to rebrowse the very point in the address 
space that was changed to be able to continue normal operation. 
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4.2.2. Implementation Approaches 

One possible technique to implement the dynamic approach is depicted in Figure 12: A static 
implementation of the OPC UA interface is first embedded to OpenModelica simulations. This static UA 
connectivity is in turn used as the means of communication between the dynamic UA server and 
OpenModelica. The frontend is responsible for mapping the address space of the simulation to the 
address space of the dynamic UA server.  As the dynamic UA server is started, it establishes a 
connection to the OpenModelica simulation 1 through the OPC UA interface. When the model is altered 
and thus the OpenModelica simulation 2 is generated, the connection to the first simulation is cut and a 
new one is created to the simulation 2. 

 
Figure 12. The dynamic solution that utilizes the static OPC UA interface in communication between 

the dynamic OPC UA server and OpenModelica simulations 

A more probable choice for the implementation than what was presented above is to integrate the UA 
server as a part of the Simantics platform, as is shown in Figure 13. To connect to simulations, the 
frontend could utilize the Variable interface of Simantics. With such an approach, there would be no 
need to rely on a static implementation or to build an OPC UA client. Moreover, the Simantics platform 
would be responsible of switching the connections from the old model to the new one to a certain 
degree. Besides enabling the connection between OpenModelica and OPC UA, such an implementation 
could be reused to enable Apros, as well as other modelling environments within Simantics, to 
communicate through the UA interface, as well. 
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Figure 13. The dynamic solution that uses the Variable interface of the Simantics platform to handle 

the connection between the OPC UA server and OpenModelica simulations 

A downside for both of the approaches presented above is that the dynamic server cannot be utilized via 
the regular OPC interface by using the OPC Kits; to allow OPC connectivity, the Adda interface would 
have to be utilized. If the frontend was coupled to the UA server through the Adda interface, the 
implementation of the UA server itself ought not to differ from the one proposed in the previous section. 
However, because reading and writing values in the Adda interface is handled by using pointers straight 
to the simulation data, one major difficulty will follow: the only feasible solution would be to maintain a 
copy of the original address space of the OpenModelica in the frontend, with duplicates of the variable 
values as well. The copy would be kept updated by using events from the simulator or by polling. 
Implementing the dynamic solution with the Adda interface included would thereby lead to many 
uncertainties in the development process. 

As described above, introducing the dynamic solution makes the implementation more complex by 
bringing a new layer of abstraction to the communication system. Hence the time allocated for the 
implementation process needs to be evidently longer than with the static solution. The complexity also 
brings unpredictability to the estimation of the actual workload. A new layer of abstraction leads to a 
decrease in performance. However, if a computationally effective static solution is implemented 
alongside, the dynamic solution would not need to have high performance. 
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5. Chosen Approach 

In this chapter, the chosen approach is selected and the choice is justified. The details of the 
implementation are then discussed more deeply as well as are the performance issues concerning the 
implementation. Lastly, different scenarios of how to continue the development after an initial version 
has been created are presented. 

5.1. Comparison and Rationale 

The two solutions described above have considerably dissimilar capacity demands as they emphasize 
the two mutually exclusive quality attributes: computational efficiency and flexibility. When used in model 
based control, there is no need to provide the ability of modifying the model, a feature which a designer 
of the system would need. Conversely, the designer does not need the computational efficiency which is 
needed in real-time control. Since efficiency limits flexibility and vice versa, two different architectural 
approaches should be utilized in order to achieve the different goals. 

At this point of the project, the static solution using the Adda interface is selected to be the chosen 
architectural approach in incorporating the OPC UA interface into OpenModelica. By using either one of 
the solutions, the Adda interface could be utilized and the minor goals related to connecting UA to Apros 
and OPC to OpenModelica achieved. However, since the dynamic implementation with Adda may 
introduce significant problems and cannot guarantee high computational efficiency, the static solution is 
chosen over the dynamic one. 

In addition to the higher computational efficiency of the static solution, there are other reasons as well to 
support the choice. The static solution is easier to implement and its properties can be analyzed more 
easily. Hence the implementation can be completed in a shorter time span and the succeeding of the 
project can be assured with a greater amount of certainty. Another reason for developing the static 
solution instead of the dynamic one is that once the static solution has been implemented, it is 
conceivable that parts of the implementation can be reused to develop the dynamic solution. Even if the 
components were not directly reused, the methodology employed for the static implementation could be 
used to help the developing of the dynamic implementation. 

Some of the implementation problems can be solved more effortlessly by using the dynamic approach, 
though. An example of such a problem is accessing the simulation instantly after it has been created. 
Since the simulation starts running right away when it is started, a UA client implemented in the static 
manner has to deal with all the connecting procedures with the simulation already running before 
obtaining access to the simulation. With the dynamic solution, the connection can be established 
beforehand and thus the control is gained at the moment the simulation is started. The above example is 
rather a special case, though; the great majority of problems demand evidently more work when solved 
with the dynamic solution. 

5.2. Implementation Details 

In this section, the main details concerning the implementation are discussed further, yet still on a 
relatively high level. In addition, alternative methods for the implementation of certain functionalities are 
compared with each other as well as some optionally included functionalities are presented. 
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To facilitate building an OPC UA server, the OPC Foundation provides reference implementations for the 
communication stacks written in C, C#, and Java. Since the stack provides mechanisms for message 
passing only, to start building a UA server on top of a mere communication stack is very time-
consuming: all the higher level application layer functionalities have to be written from scratch. In 
addition, as is stated by the OPC Foundation, such a way of developing a UA server is not encouraged 
because of, among others, interoperability reasons [29]. Thus a software development kit, SDK, can be 
used on top of the communication stack. In the scope of this report, an SDK is software which supports 
the application programmer to implement a UA server. It provides implementations for the service sets of 
UA, helper classes for often used functionalities, security handling, and so on, thus leaving nothing but 
the connection between the system and the UA server on the responsibility of the application 
programmer. 

The software development kit chosen to be used in this project is UA SDK C++ [30] from Unified 
Automation. The licence for the full version can be acquired for the price of €13,000. Even when there is 
a C# implementation offered for free by the OPC Foundation, using C++ ensures higher efficiency with 
no burden of a virtual machine or a need to include the extensive C# standard libraries. Furthermore, 
with the most parts of OpenModelica being written in C++ as well, to use C++ comes in a natural way. 
An evaluation version of the SDK is available for free and has been used in order to familiarize with the 
features of the software. The evaluation version has been used for early prototyping of the 
implementation, too. 

The Unified Automation SDK offers a comprehensive set of functionalities to enable creating a UA server 
application: Everything from starting and running the server application to managing connections and 
sessions with clients can be achieved with no effort from the application programmer. Functionalities 
such as managing nodes in the address space and handling subscriptions are also readily implemented. 
The software package also contains a sample implementation of a UA server and sufficient 
documentations to ensure a gentle learning curve. 

With a major part of the UA server readily implemented by the SDK, all that needs to be done to create a 
connection between OpenModelica and the OPC UA interface is as follows: Firstly, the address space of 
OpenModelica has to be mapped to the address space of the UA server. Secondly, functions of UA, 
such as read and write, have to be mapped to the corresponding functions in the Adda interface. Thirdly, 
functions provided by the Adda interface have to be implemented in OpenModelica. The same applies 
vice versa if such functions are needed. The three phases are described in the following. 

The address space of OpenModelica is mapped to the one of OPC UA in a straightforward manner. The 
Adda interface can be used to handle only trees with branches and items. Hence the address space of 
the OPC UA interface is a tree as well. Modelica Objects and Components are shown as folder-like 
objects and variables, respectively, in the OPC UA interface. 

The functionalities of the OPC UA interface are implemented only to a certain extent. With the 
restrictions caused by the Adda interface, it would not be even possible to implement a system 
supporting all the functionalities provided by the OPC UA interface. In the scope of this project, the OPC 
UA Data Access Specification is implemented to OpenModelica: the minimum target is to implement 
basic functionalities for browsing the address space, reading and writing values, and subscribing for 
variables. Since the SDK does most of the work on behalf of the application programmer, the main 
things that need to be done are to scan the whole address space of OpenModelica for starters and 
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implement the read and write functions to acquire data from the simulation. However, in addition to 
mapping these functionalities to Adda functions, some extra work needs to be done. For instance, since 
the Adda interface introduces a grouping ideology similar to that of OPC, additional function calls need to 
be made before an access to a variable value can be gained. In addition to implementing the Data 
Access specification, since the execution of the simulation is wanted to be controlled as well, the 
Programs Specification [31] has to be implemented to some extent: the simulation control functions of 
Adda responsible for starting and interrupting the simulation are mapped to UA method calls in a 
straightforward manner while the rest of the functions are omitted. 

The Adda interface ought to be implemented completely in OpenModelica in order to enable full 
interoperability with the OPC Kits. However, certain prioritization is performed and thus not all 
functionalities, such as event handling, are implemented. In addition, because of the differences between 
Adda and OPC UA, it remains to be seen whether all of the functionalities used by the simulator need to 
be implemented in the UA server at all as they might not be of any use. 

The SDK used does not support variables in its address space to have pointers to values in the 
underlying simulator as such. Instead, when a client requests an access to a certain variable through the 
UA interface, the server copies the value from the simulator and sends the copy to the client. Since the 
SDK cannot be completely inspected using the mere evaluation version, it is hard to determine whether 
applying such a property would be trivial or time-consuming. Hence the optimization of the process is left 
for further development and the SDK is used as such. 

By using an OMI-like interface, integrating OPC UA to OpenModelica would be eminently simple. This is 
due to that when OpenModelica has finished calculating one step in the simulation, it sends all the 
values of the specified variables that have changed. If OpenModelica used this kind of a methodology, 
but with better efficiency than OMI, of course, the third option for accessing the simulator data presented 
in subsection 4.1.2 could be used: OpenModelica could send all the values which have changed to the 
UA server. However, as the Adda interface has no support for behaviour of that kind, this implementation 
option could not be chosen. Another thing would be, though, whether this kind of an approach was 
beneficial since by using this method one additional copy operation would be mandatory in any case. 

5.3. Performance Issues 

The main performance goal of the OPC UA interface is that it can be used in systems with a great 
amount of data to be processed and transferred. Since the SDK is provided with the means of using the 
UA Native binary protocol to transfer data, only the processing of data needs to be focused on. With a 
great amount of data to be processed, the key question in optimizing the performance is the 
computational efficiency of the read and write operations. 

A major performance issue is security. The practice has shown that encrypting data can lead to even two 
orders of magnitude slower performance. For certain systems, however, there is no practical demand for 
security. Thus the security can be switched off in those situations. 

As mentioned earlier, the read and write operations utilize pointers in the Adda interface whereas in the 
SDK one copy operation has to be made for either operation. If no excessive copying is made in 
between Adda and OpenModelica, the total amount of additional copies can thus be limited to one. 
Whether or not this is a sufficient enough result can be determined only by measuring the performance 
of the implementation and reflecting the results against the requirements. 
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Before data can be accessed through the Adda interface, a couple of additional function calls have to be 
made. These function calls are quite meaningless from the viewpoint of the OPC UA. However, as they 
are not related straight to reading and writing values, they merely bring some latency in the initialization 
phase instead of slowing down data processing in normal operating conditions. Thereby, these aspects 
have not much importance. 

Another issue is whether the SDK used is otherwise computationally heavy. Only a minor superficial 
inspection has been made in the field of this subject; no accurate measurements have been taken. 
However, as the SDK is written in C++, no additional computational overhead is caused by a virtual 
computer like with Java or C#. 

For applications with high performance requirements and with no need for security, most of the 
importance is laid on having as fast an implementation as possible. Once an initial implementation is 
completed, estimating the true performance of the system and how big an influence each operation has 
on it will become a lot easier. Moreover, not until then, there is little reason to optimize the performance 
to a higher degree. Let the performance be optimized or not, the structure of the software shall be 
constructed in such a way that optimization can be carried out afterwards if necessary. 

5.4. Future Work 

In this section, different ideas and visions are viewed concerning how the project could be continued 
after an initial implementation is completed. New features as well as methods to improve performance 
are discussed, as well. 

The most likely way to begin further development is to start implementing the dynamic solution. Since 
neither the static nor the dynamic solution guarantees both performance and flexibility, in order to 
achieve the both properties, the dynamic solution is to be implemented beside the static one. Thus one 
of the solutions could be used in the model building phase and the other when the model is used as a 
part of a control system. Moreover, if no strict efficiency requirements exist for the dynamic solution, to 
facilitate the implementation, a higher level programming language, namely Java, could be utilized in the 
dynamic solution. 

Concerning the static solution, a vision where a parallel implementation not using the Adda interface 
could be contemplated as well. Omitting the Adda interface would lead to increased performance and 
allow more evolved functionalities to be implemented. Even when a great deal of such functionalities can 
be implemented with Adda as well, some cannot. For instance, a comprehensive use of metadata, one of 
the key advantages of OPC UA, cannot be utilized with Adda involved.  

Even without creating a new implementation based on a different architecture, certain features could be 
added to the existing implementation. One proposed feature related to the simulation control is that the 
simulation could be controlled by a finite state machine representing the relations between the different 
states of the simulation and controlling the simulation. The initial implementation has two “states”: 
running and suspended. However, their relationships are not described in the UA server in any way; 
instead, the simulation is controlled using start and pause commands which have no knowledge about 
the state of the simulation. A state machine would allow a UA client to be informed about the state of the 
simulation as well as provide proper interface of controlling the simulation. If the state machine consisted 
of more than just two states, more commands to control the simulation might need to be implemented 
additionally. 
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The chosen static approach provides no support whatsoever for events. To enable efficient use in model 
based control, the latencies of the system would need to be as small as possible, a target achievable by 
using events. Events could be used to inform clients of when a simulation step has finished, about which 
values have changed, and so on. If a dynamic solution was to be implemented, one solution for the 
communication between OpenModelica and the frontend would be an OMI-like approach where the 
simulation values that have changed were sent to the frontend. 

Besides using events provided by the UA and Adda interfaces, the abovementioned properties could be 
achieved by equipping the UA server with a UA client. In such a server–server approach, both 
OpenModelica and the application in a connection with it would incorporate OPC UA servers with client 
capabilities embedded. Even when such an architecture is neither proposed nor designed here, it seems 
that the workload of the migration to such an architecture seems not to be very large. 

Besides creating the implementation without Adda, there is another solution to improve computational 
efficiency. Since the source code of SDK can be acquired as well, it can be altered in order to remove 
undesired layers of abstraction. Even if the structure of the software would not be touched, using of 
pointers to the variables of the simulation instead of duplicate values would decrease computational 
overhead and thus improve performance. 

One proposed solution, instead of continuing the development with the Unified Automation SDK, is to 
implement the whole OPC UA server from scratch. Unlike a commercial SDK, a self-made 
implementation would not need to be implemented to the same extent; only simple data accessing and 
simulation control would need to be implemented. Besides enabling to design the implementation to 
emphasize the features important for this very project, this approach has another benefit, too: By using 
the SDK, the software created has to be published as a closed source precompiled dynamic link library. 
On the contrary, when creating the whole software independently with no dependencies to a commercial 
product, the whole UA server implementation can be published as open source, an approach fitting 
better to the idea of openness in OpenModelica. 
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6. Conclusions 

Equipping OpenModelica with the OPC UA server capability will enable simulations to be used in 
controlling complex technical systems in real time. Additionally, OpenModelica simulations themselves 
can be supervised, controlled, and connected to practically any kind of application capable of acting as 
an OPC UA client; any software, not just control and automation applications, benefitting from running 
OpenModelica simulations can do so through the OPC UA interface. 

The architectural approach chosen for the implementation enables OpenModelica to be used through the 
OPC UA connection within systems requiring high performance in both transferring and processing of 
data. As the chosen approach allows the regular OPC interface to be utilized in an efficient manner as 
well, both already existing and new solutions whose communication methods rely on OPC can be 
handled. In addition, to enable the Apros software to be capable of being connected with state-of-the-art 
process control solutions in future as well, parts of the implementation are reused in order to embed the 
OPC UA interface to Apros, too. 

To achieve the abovementioned qualities, the implementation of the OPC UA interface based on the 
suggested static solution can be initiated. Additionally, in order to realize the potential of OPC UA that 
cannot be attained with the static solution, the development can be continued further; once the initial 
implementation is in a stable condition, a closer study concerning the dynamic solution implementation 
can be launched. Optionally, other means to improve and extend the implementation can be considered 
in order to achieve new properties and better performance. 

The need for a common open interface through which different software and hardware applications from 
different vendors can communicate is self-evident. Equally crystal clear is that simulation tools are 
needed as a part of modern control systems. Once the OPC interfaces are supported in OpenModelica, 
the broad adopter base of systems already using OPC is provided with connectivity to an open 
simulation environment. Moreover, OPC UA is seen as a forward-looking solution to work out the I/O 
problem of OpenModelica; in the future, assuming OPC UA breaks through as a commonly used protocol 
in communication between applications of both software and hardware, there is a strong likeliness that 
OpenModelica can be tightly integrated to almost any kind of technical system, including, but not limited 
to, process control and manufacturing automation systems. 
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