
Draft for a simulation runtime in
OpenModelica

Willi Braun

November 8, 2011

This draft describes the current state of the OpenModelica run-time and
the requirements of improvements for the current c-run-time.

Keywords: Simulation, c-run-time, solver, OpenModelica

1. Introduction

This draft summarizes all tasks which are needed to be done in the simulation
run-time for the modeling and simulation environment OpenModelica. The
simulation run-time is a library that is used with the generated model code
to be able to execute a simulation of the library. For the OMC exist several
run-time libraries and therefore the generated model code is different each
library.

• c-runtime

• cpp-runtime

• adevs-runtime

• csharp-runtime

This draft is concerning the c-run-time. This library has grown over the
last few years. The historical growth is one reason for a weak structure.
Therefor the c-run-time will be reimplemented during the OpenModelica
Developer week in November 2011.

Further, this draft wants to setup a clear structure for the current tasks,
also with respect to future tasks.

The c-run-time is used for the following jobs:

• Simulation of a generated model.

• FMI Export uses functions of the simulation run-time[1].

• Interactive Simulation



• . . .

Therefore, section 2 will state and describe all requirements on a simulation
run-time. In the next section 3 the goals for the redesign will be summarized.

2. Requirements

The main purpose of the simulation run-time is to calculate the simulation
of a translated model. In addition, there are some further tasks that are
solved by using functions of the simulation run-time (e.g. FMI, interactive
simulation, etc.). The calculations that are needed to be done during the
simulation process are specified in A.

to be continued . . .

3. Goals for Redesign

• Redesigning the usage of variables in the run-time. Separating static
and dynamic variables (see 3.1).

• The reduction of the size of the generated model code and the size of
every single function (see 3.2).

• Increasing the possibilities of debugging the solving process and provide
better information for the users (see 3.3).

• Fixing some issues in the current simulation run-time (see 3.5).

• Preparing the run-time for future tasks (see 3.4).

to be continued . . .

3.1. Separate static and dynamic variables

In the current c-run-time we have a struct sim_DATA that contains almost
all data of a simulation model(see 1). This should be separated in at least
two parts. One part for dynamic variables and one part for static variables.
Further, we should create a new structure for all simulation variables, that
contain all information about it (e.g. current value, start value, fixed-value,
pre-value, max-min-values, etc.).

Listing 1: struct of the current sim_DATA from the current c_runtim
sim_DATA { /∗ t h i s i s the data s t r u c t u r e f o r sav ing

important data f o r t h i s s imu la t i on .
Each genera ted func t i on has a DATA
parameter which con ta ins the data .
An o b j e c t f o r the data can be crea t ed us ing
i n i t i a l i z eDa t a S t r u c ( ) f unc t i on ∗/



double∗ s t a t e s ;
double∗ s t a t e sDe r i v a t i v e s ;
double∗ a l g e b r a i c s ;
double∗ parameters ;
double∗ inputVars ;
double∗ outputVars ;
double∗ helpVars , ∗helpVars_saved ;
double∗ i n i t i a l R e s i d u a l s ;
double∗ jacobianVars ;
/∗ True i f the v a r i a b l e shou ld be f i l t e r e d ∗/
modelica_boolean∗ s t a t e sF i l t e rOutput ;
modelica_boolean∗ s t a t e sDe r i v a t i v e sF i l t e rOutpu t ;
modelica_boolean∗ a l g eb r a i c sF i l t e rOutpu t ;
modelica_boolean∗ a l i a sF i l t e rOutpu t ;
/∗ Old va l u e s used f o r e x t r a p o l a t i o n ∗/
double∗ states_old , ∗ states_old2 , ∗ states_saved , ∗ s t a t e s_s t a r t ;
double∗ s ta t e sDer iva t ive s_o ld , ∗ s ta t e sDer iva t ive s_o ld2 ,
∗ s ta te sDer ivat ive s_saved , ∗ s t a t e sDe r i v a t i v e s_s t a r t ;
double∗ a lgebra i c s_o ld , ∗ a lgebra i c s_o ld2 ,
∗ a lgebra ics_saved ,∗ a l g eb r a i c s_s t a r t ;
double oldTime , oldTime2 ; double cu r r en t_s t ep s i z e ;

/∗ Backup d e r i v a t i v e f o r d a s s l ∗/
double∗ s ta te sDer ivat ive sBackup ;
double∗ statesBackup ;
char∗ i n i tF i x ed ; /∗ Fixed a t t r i b u t e f o r a l l v a r i a b l e s and parameters ∗/
char∗ var_attr ; /∗ Type a t t r i b u t e f o r a l l v a r i a b l e s and parameters ∗/
int i n i t ; /∗ =1 during i n i t i a l i z a t i o n , 0 o the rw i s e . ∗/
int t e rmina l ; /∗ =1 at the end o f the s imula t ion , 0 o the rw i s e . ∗/
void∗∗ extObjs ; /∗ Externa l o b j e c t s ∗/
/∗ nS t a t e sDe r i v a t i v e s == s t a t e s ∗/
f o r t r an_in t ege r nStates , nAlgebraic , nParameters ;
long nInputVars , nOutputVars , nFunctions , nEquations , nPro f i l eB l o ck s ;
f o r t r an_in t ege r nZeroCross ing /∗NG∗/ ;
long nJacobianvars ;
long nRe lat ions /∗NREL∗/ ;
long n I n i t i a lR e s i d u a l s /∗NR∗/ ;
long nHelpVars/∗ NHELP ∗/ ;
/∗ ex t e rn char i n i t_ f i x e d [ ] ; ∗/
DATA_STRING s t r i n gVa r i a b l e s ;
DATA_INT in tVa r i ab l e s ;
DATA_BOOL boo lVar i ab l e s ;
DATA_REAL_ALIAS∗ r e a lA l i a s ;
long nAl ias ;
const char∗ modelName ; /∗ For error messages ∗/
const char∗ mode lF i l ePre f i x ; /∗ For f i l enames , inpu t / output ∗/
/∗ to check i f the model_init . xml match the model ∗/



const char∗ modelGUID ;
const struct omc_varInfo∗ statesNames ;
const struct omc_varInfo∗ s tateDer ivat ivesNames ;
const struct omc_varInfo∗ algebraicsNames ;
const struct omc_varInfo∗ parametersNames ;
const struct omc_varInfo∗ alias_names ;
const struct omc_varInfo∗ int_alg_names ;
const struct omc_varInfo∗ int_param_names ;
const struct omc_varInfo∗ int_alias_names ;
const struct omc_varInfo∗ bool_alg_names ;
const struct omc_varInfo∗ bool_param_names ;
const struct omc_varInfo∗ bool_alias_names ;
const struct omc_varInfo∗ string_alg_names ;
const struct omc_varInfo∗ string_param_names ;
const struct omc_varInfo∗ str ing_al ias_names ;
const struct omc_varInfo∗ inputNames ;
const struct omc_varInfo∗ outputNames ;
const struct omc_varInfo∗ jacobian_names ;
const struct omc_functionInfo ∗ functionNames ;
const struct omc_equationInfo∗ equat i on In fo ;
const int∗ equat ionInfo_reverse_prof_index ;
double startTime ; /∗ the s t a r t time o f the s imu la t i on ∗/
double timeValue ; /∗ the time f o r the s imu la t i on ∗/
/∗ used in some genera ted func t i on ∗/
/∗ t h i s i s not changed by i n i t i a l i z eDa t a S t r u c ∗/
/∗ The l a s t time va lue t ha t has been emi t ted . ∗/
double lastEmittedTime ;
/∗ when != 0 f o r c e emit , s e t e . g .
by newTime fo r e q u i d i s t a n t output s i g n a l . ∗/
int forceEmit ;
/∗ An array con ta in ing the i n i t i a l data o f
samples used in the sim ∗/
sample_raw_time∗ rawSampleExps ;
long nRawSamples ;
// The queue o f sample time even t s to be processed .
sample_time∗ sampleTimes ; /∗ Warning : Not implemented ye t !? ∗/
long curSampleTimeIx ;
long nSampleTimes ;

} DATA;

All the variables in the listing 1 and all other global variables in the
simulation_*.cpp files should categorised and separated in of the categories
in the figure 1. Therefore could be create a new file simulation_data.h that
contains all types.



Figure 1: Schematic separation of variables used in c-run-time.

Dynamic part

dynamicVar contains all values of the variables that might be changed dur-
ing the simulation. Hence we need to interpolate some values during
the simulation, we need also some old values stored here. For handling
events proper we need also save for every variable a pre-value.

dynamicHelp in the current implementation we save relations, ZeroCross-
ings in helpvars. So we should collect them all in central structure
that is organized similar to all other variables.

More?

Static part:

staicVar contains all static information about a variable of the simulated
model. The static information consists of varInfo and varAttributes.

equationInfo a structure defined in simulation_varinfo.h.

lookupVars contains the indices for the categorised variables (states, der(states),
algebraics, etc.) of the dynamicVar array.



SimData contains all parameters to control the simulation process.

SolverData contains all parameters to setup the used solver.

debugFlags contains the flags for debugging the simulation.

More?

3.1.1. implementation issues

unions, ring buffer ??? to be continued in more detail . . .

3.2. Reducing the size of the generated model code and
generated functions

Currently, we generate almost every equation one time for “functionODE”
and “functionAlgebraics” and a second time for “functionDAE”. This could
be avoided by generating every equation or equation-block just one time and
creating one function with a parameter for the context in which this function
is going to be executed. There are two different context where an equation
can be executed: (1) during a continuous integration, where changing of
relations and discrete variables is forbidden. (2) during an event, where
the relations and discrete variables can be changed. Thus the size of the
generated model will be reduced all in all and also the size of generated
functions. Therefore this will result in a huge speed up of the compile time
of the “gcc” for bigger models.

to be continued in more detail . . .

3.3. Increasing the possibilities of debugging

This subsection addresses the following two issues:

• Providing better information about the solving process to the users.

• Creating possibilities for debugging the solving process from the point
of view of a developer [3].

to be continued . . .

3.4. The Requirements of the run-time in the future

As some requirements in the future we could address the following issues:

• Handling appropriate dynamic state selection.

• Handling varying structure problems.

• Preparing the run-time for parallelization of the simulation process.

• . . .



This topics should be discussed further at the developer week.
to be continued . . .

3.5. Current unsolved issues in the run-time

In the current run-time there are also some issues, which aren’t handled
appropriate right now or missing at all. They should also be addressed
during this redesign.

• Algorithm sections should be initialized correctly. Therefore the start
values of all variables are needed.

• Some Modelica statements are not supported appropriately. Following
a first small list.
parameters There is no separation of primary and secondary param-

eters. So that one could think to change secondary parameters in
the init-file.

input varibales There is no possibility to provide input variables by
files.

Special Statements assert() and terminate() are not handled appro-
priately.

initial() In the current run-time the expression when not initial() then ...
is not handled appropriately.

. . .

• . . .

to be continued . . .

4. Overview of current c-runtime

to be continued . . .

A. Calculations during the simulation

Flat hybrid DAEs could represent continuous-time behavior and discrete-
time behavior. This is done mathematically by the equation (1).

F (ẋ(t), x(t), u(t), y(t), q(te), qpre(te), c(te), pP , pS, s0, t) = 0 (1)

This implicit equation (1) is transformed to the explicit representation of



equation (2) by block-lower-triangular transformation. ẋ(t)
y(t)
q(te)

 =

 fs(x(t), u(t), qpre(te), c(te), pP , pS, s0, t)

fa(x(t), u(t), qpre(te), c(te), pP , pS, s0, t)

fq(x(t), u(t), p, qpre(te), c(te), pP , pS, s0, t)

 (2)

From this explicit form all necessary calculations can be educed for the sim-
ulation of the model. This is done by formulating the continuous-time part,
followed by the discrete-time part. Below are summarized the notation used
in the following equations:

• ẋ(t), the differentiated vector of state variables of the model.

• x(t), the vector of state variables of the model, i.e., variables of type
Real that also appear differentiated, meaning that der() is applied to
them somewhere in the model.

• u(t), a vector of input variables, i.e., not dependent on other variables,
of type Real. They also belong to the set of algebraic variables since
they do not appear differentiated.

• y(t), a vector of Modelica variables of type Real which do not fall into
any other category.

• q(te), a vector of discrete-time Modelica variables of type discrete Real,
Boolean, Integer or String. These variables change their value only
at event instants, i.e., at points te in time.

• qpre(te), the values of q immediately before the current event occurred,
i.e., at time te.

• c(te), a vector containing all Boolean condition expressions evaluated at
the most recent event at time te. This includes conditions from all if-
equations and if-statements and if-expressions from the original model
as well as those generated during the conversion of when-equations and
when-statements.

• pP = p1, p2, . . ., a vector containing the Modelica variables declared as
primary parameter i.e., variables without any time dependency and
without a dependence on other parameters.

• pS = p1, p2, . . ., a vector containing the Modelica variables declared as
secondary parameter i.e., variables without any time dependency,
but with a dependence on other parameters.

• s0 = s1, s2, . . . all start values in the model.

• t, the Modelica variable time, the independent variable of type Real
implicitly occurring in all Modelica models.



A.1. Continuous Behavior

The continuous behavior of hybrid DAEs can be formulated with the follow-
ing equations (3).(

ẋ(t)
y(t)

)
=

(
fs(x(t), u(t), qpre(te), c(te), pP , pS, s0, t)

fa(x(t), u(t), qpre(te), c(te), pP , pS, s0, t)

)
(3)

The states x(t) are determined by an integration method, so that they are
assumed to be known as the vectors u(t) and p[P |S]. For discrete variables and
the condition expressions te is used instead of t to indicate that such variables
may only change values at event points of time and are kept constant in the
continuous parts of the simulation.

Imported is also that all conditions c(te) are kept on there current value
for the whole continuous step. If the continuous step cause

A.2. Discrete Behavior

The discrete behavior is controlled by events. Events are triggered by the
event conditions c(te) and can appear at any time as well as influence the
system several times.

An event occurs when a condition of c(te) changes it’s value at time te
from false to true or the other way around. This occurs if and only if for a
sufficient small ε, one condition in c(te) is changed, for e.g. c(te− ε) is false
and for c(te + ε) is true. When an event occurs all caused changes in the
system can be carried out. In addition, the entire system must be determined
by the function (2) to guarantee the synchronism of all equations. However,
it is not enough to determine only the discrete variables by the function fq
at this point.

The problem to be solved here is the most accurate determination of the
event time te. For this conditions c(te) can be divided into three groups.

1. Conditions ck(te), which also depend on continuous variables.

2. Conditions cd(te), that only depend on discrete variables.

3. Conditions cnoEvent(t), are evaluated without resulting in an event.

If the smooth operator applies to a condition in c(te) this condition can
be categorized depending on the order of the integration method by 1. or 3.,
respectively.

The second and third group of conditions are easy to handle, because if a
condition in c(te) only depends on discrete variables, then they could only
change at events and the conditions cd(te) must be tested only at events. The
conditions cnoEvent(t) result logically in no events. Thus, the equations which
depend on conditions cnoEvent(t), will be determined during the continuous



integration at the output points. Hence the variables that are determined by
the function (4) should be treated appropriately, like algebraic variables.

qnoEvent(t) := g(x(te), u(te), qpre(te), cnoEvent(te), p, t) (4)

What remains is the group of conditions, that lead to state events. For
this group of conditions a time-consuming search has to be performed. These
conditions have to be checked during the continuous solution as described in
the next section.

Additional, discontinuous changes can caused by the reinit() operator
to the continuous states x(t). As for purely discrete conditions cd(te) the
reinit() operator can only be activated at event times te . This new allo-
cation to the states could use the function (5).

x(te) := fx(x(t), ẋ(t), u(t), q(te), qpre(te), c(te), p, t) (5)

A.3. Run-time Algorithm

A general approach for the simulation of hybrid systems has been developed
by Cellier ( cf. [?]). In the following a schematic Flowchart (see fig. 2) for
the simulation is shown and each step is described.

First of all the simulation must be initialized consistently. For that the
initial values are found with a simplex optimization method in OpenModelica
(cf. [?]). By use of the initial conditions the initial values for the entire system
can be determined with the function (2). This will also execute all initial
events at time t0.
After the initialization the main simulation loop starts with the continuous

integration step that calculates the states x(ti+1). With the new values of
x(ti+1), the functions fs and fa can be evaluated. Thus, the entire continuous
system is determined.

The continuous integration step is accepted if none of the Zero-Crossing
functions has a zero-crossing, i.e in c(ti+1) no value has changed compared
to c(ti). If no event has occurred the values can be saved and the next step
can be performed.

However, if a value of c(ti+1) changes, an event occurred within the in-
terval ti and ti+1. Then the exact time te has to be detected. Therefore
a root finding method is performed on the Zero-Crossing functions of the
corresponding conditions. If several Zero-Crossing functions apply the first
occurring root is chosen as the next event time te.
The next step is to prepare the treatment of an event by evaluating the

system just before an event at time te − ε, and shortly after the event at
te+ ε. Current derivative-free root finding methods work under the principle
that the root is approximated through limits at the two sides, so that the
delivered root lies somewhere in the interval [te − ε; te + ε]. Here ε is the



Figure 2: Schematic Flowchart for simulation hybrid models.

tolerance level of the root finding method. Thus the necessary information
to treat the event are available after the root is found.

The treatment of an event looks like that: The continuous part is evaluated
at the time just before the event te − ε and all values are saved to provide
them to the pre() operator. Then the entire system is evaluated by the
function (2) at time te + ε. At this point the causing event is handled and
now further caused events are processed with the so-called Event-Iteration.
Therefore the entire system constantly is re-evaluated, as long as there exist
discrete variables qj that satisfy pre(qj) 6= qj. Only if for all discrete variables
pre(qj)= qj is fulfilled, the Event-Iteration has reached a stable state and
the next integration step can be performed.

References

[1] MODELISAR: Functional Mock-up Interface for Model Exchange,
http://modelisar.org/specifications/FMI_for_ModelExchange_
v1.0.pdf, Januar 2010.



[2] Fritzson P., et. al.: OpenModelica System Documentation, PELAB,
Department of Computer and Information, Linköpings universitet, 2010.

[3] Pop, Adrian Dan Iosif and Fritzson, Peter (2007). Towards Run-time De-
bugging of Equation-based Object-oriented Languages. The 48th Con-
ference on Simulation and Modeling SIMS,2007. s. 134-139


