1 | within ;
|
---|
2 | package Test0
|
---|
3 | model FullRecovery "Minimize mechanical energy in a simple path"
|
---|
4 | parameter Real m=1000 "1000 kg of vehicle mass";
|
---|
5 | parameter Real p=1 "needed for final constraints";
|
---|
6 | parameter Real fGrip=0.02;
|
---|
7 | parameter Real S=2 "superficie frontale in m^2";
|
---|
8 | parameter Real Cx=0.4;
|
---|
9 | constant Real rho=1.226 "densit� aria kg/m^3";
|
---|
10 | constant Real g=9.81;
|
---|
11 | Real a(
|
---|
12 | min=-1,
|
---|
13 | max=1,
|
---|
14 | nominal=0) annotation (isConstraint=true);
|
---|
15 | Real v(start=0);
|
---|
16 | Real pos(start=0);
|
---|
17 | Real pow=f*v "Mechanical power";
|
---|
18 | Real fResis "Motion resistance";
|
---|
19 | Real Energy "Energy to minimize";
|
---|
20 | input Real f(min=-1e9, max=1e9);
|
---|
21 | Real constEn(nominal=1) = Energy "minimize Energy(tf)"
|
---|
22 | annotation (isMayer=true);
|
---|
23 | Real constSpeed(
|
---|
24 | min=0,
|
---|
25 | max=0) = p*v " 0<= p*v(tf) <=0 " annotation (isFinalConstraint=true);
|
---|
26 | Real constSpace(
|
---|
27 | min=1000,
|
---|
28 | max=1000) = p*pos " 0<= p*v(tf) <=0 " annotation (isFinalConstraint=true);
|
---|
29 | equation
|
---|
30 | der(Energy) = pow;
|
---|
31 | der(pos) = v;
|
---|
32 | der(v) = a;
|
---|
33 | fResis = fGrip*m*g + 0.5*Cx*rho*S*v^2;
|
---|
34 | f - fResis = m*a;
|
---|
35 | annotation (Documentation(info="<html>
|
---|
36 | <p>train movement optimization.</p>
|
---|
37 | </html>"), experiment(
|
---|
38 | StartTime=0,
|
---|
39 | StopTime=100,
|
---|
40 | Tolerance=1e-08,
|
---|
41 | Interval=0.333333));
|
---|
42 | end FullRecovery;
|
---|
43 |
|
---|
44 | model DOcoasting1 "Minimize mechanical energy in a simple path"
|
---|
45 | // Prova con selezione automatica del coasting.
|
---|
46 | // Contiene un trucco per evitare variabili booleane o intere per simulare il coasting:
|
---|
47 | // quando la forza motrice scende sotto soglia threas, s'intende che siamo in coasting
|
---|
48 | // e la potenza al pantografo si annulla
|
---|
49 | parameter Real m=1000 "1000 kg of vehicle mass";
|
---|
50 | parameter Real p=1 "needed for final constraints";
|
---|
51 | parameter Real fGrip=0.02;
|
---|
52 | parameter Real S=2 "superficie frontale in m^2";
|
---|
53 | parameter Real Cx=0.4;
|
---|
54 | parameter Real iLoss=200 "iron losses, W, when no coasting";
|
---|
55 | constant Real rho=1.226 "densità aria kg/m^3";
|
---|
56 | constant Real g=9.81;
|
---|
57 | Real a(
|
---|
58 | min=-1,
|
---|
59 | max=1,
|
---|
60 | nominal=0) annotation (isConstraint=true);
|
---|
61 | Real v(start=0);
|
---|
62 | Real pos(start=0);
|
---|
63 | Real elePow, ironLoss;
|
---|
64 | Real fResis "Motion resistance";
|
---|
65 | Real Energy "Energy to minimize";
|
---|
66 | input Real f(min=-1e9, max=1e9);
|
---|
67 | Real constEn(nominal=1e8) = Energy "minimize Energy(tf)"
|
---|
68 | annotation (isMayer=true);
|
---|
69 | Real constSpeed(
|
---|
70 | min=0,
|
---|
71 | max=0) = p*v " 0<= p*v(tf) <=0 " annotation (isFinalConstraint=true);
|
---|
72 | Real constSpace(
|
---|
73 | min=1000,
|
---|
74 | max=1000) = p*pos " 0<= p*v(tf) <=0 " annotation (isFinalConstraint=true);
|
---|
75 | equation
|
---|
76 | ironLoss = iLoss*(1 - exp(-f^2/1e4));
|
---|
77 | //ironLoss=100;
|
---|
78 | elePow = f*v + ironLoss;
|
---|
79 | der(Energy) = elePow;
|
---|
80 | der(pos) = v;
|
---|
81 | der(v) = a;
|
---|
82 | fResis = fGrip*m*g + 0.5*Cx*rho*S*v^2;
|
---|
83 | f - fResis = m*a;
|
---|
84 | annotation (Documentation(info="<html>
|
---|
85 | <p>train movement optimization.</p>
|
---|
86 | </html>"), experiment(
|
---|
87 | StartTime=0,
|
---|
88 | StopTime=100,
|
---|
89 | Tolerance=1e-08,
|
---|
90 | Interval=1));
|
---|
91 | end DOcoasting1;
|
---|
92 |
|
---|
93 | model DOminEnPant "Minimize mechanical Pantograph energy in a simple path"
|
---|
94 | parameter Real m=1000 "1000 kg of vehicle mass";
|
---|
95 | parameter Real p=1 "needed for final constraints";
|
---|
96 | parameter Real fGrip=0.02;
|
---|
97 | parameter Real S=2 "superficie frontale in m^2";
|
---|
98 | parameter Real Cx=0.4;
|
---|
99 | constant Real rho=1.226 "densità aria kg/m^3";
|
---|
100 | constant Real g=9.81;
|
---|
101 | Real a(
|
---|
102 | min=-1,
|
---|
103 | max=1,
|
---|
104 | nominal=0) annotation (isConstraint=true);
|
---|
105 | Real v(start=0);
|
---|
106 | Real pos(start=0);
|
---|
107 | Real mechPow=f*v "Mechanical power";
|
---|
108 | Real fResis "Motion resistance";
|
---|
109 | Real mechEnergy;
|
---|
110 | Real energy "Energy to minimize";
|
---|
111 | input Real f(min=-1e9, max=1e9);
|
---|
112 | Real constEn(nominal=1) = energy "minimize energy(tf)"
|
---|
113 | annotation (isMayer=true);
|
---|
114 | Real constSpeed(
|
---|
115 | min=0,
|
---|
116 | max=0) = p*v " 0<= p*v(tf) <=0 " annotation (isFinalConstraint=true);
|
---|
117 | Real constSpace(
|
---|
118 | min=1000,
|
---|
119 | max=1000) = p*pos " 0<= p*v(tf) <=0 " annotation (isFinalConstraint=true);
|
---|
120 | equation
|
---|
121 | der(mechEnergy) = mechPow;
|
---|
122 | der(pos) = v;
|
---|
123 | der(v) = a;
|
---|
124 | energy = mechEnergy;
|
---|
125 | fResis = fGrip*m*g + 0.5*Cx*rho*S*v^2;
|
---|
126 | f - fResis = m*a;
|
---|
127 | annotation (Documentation(info="<html>
|
---|
128 | <p>train movement optimization.</p>
|
---|
129 | </html>"), experiment(
|
---|
130 | StartTime=0,
|
---|
131 | StopTime=100,
|
---|
132 | Tolerance=1e-08,
|
---|
133 | Interval=0.333333));
|
---|
134 | end DOminEnPant;
|
---|
135 |
|
---|
136 |
|
---|
137 | annotation (
|
---|
138 | Icon(graphics, coordinateSystem(
|
---|
139 | extent={{-100,-80},{100,80}},
|
---|
140 | preserveAspectRatio=true,
|
---|
141 | initialScale=0.1,
|
---|
142 | grid={2,2})),
|
---|
143 | Diagram(graphics, coordinateSystem(
|
---|
144 | extent={{-100,-100},{100,100}},
|
---|
145 | preserveAspectRatio=true,
|
---|
146 | initialScale=0.1,
|
---|
147 | grid={2,2})),
|
---|
148 | uses(Modelica(version="3.2.1")),
|
---|
149 | version="1",
|
---|
150 | conversion(from(version="", script="ConvertFromDOtrainPkg_.mos")));
|
---|
151 | end Test0;
|
---|