Opened 10 years ago
Closed 10 years ago
#2768 closed defect (fixed)
checkModel error with function handles
Reported by: | Owned by: | Martin Sjölund | |
---|---|---|---|
Priority: | high | Milestone: | 1.9.1 |
Component: | Frontend | Version: | trunk |
Keywords: | checkModel | Cc: |
Description
When executing checkModel() on the following model it returns the following error message even though simulation of the model works fine. I am running the nightly build from Aug 3rd 2014.
Error message:
"[C:/OpenModelica1.9.1Nightly/lib/omlibrary/Modelica 3.2.1/Math/Nonlinear.mo:405:3-423:28:writable] Warning: Forcing full instantiation of partial class partialScalarFunction during checkModel. [<interactive>:19:5-19:134:writable] Error: Type mismatch for positional argument 1 in Modelica.Math.Nonlinear.solveOneNonlinearEquation(f=function MetalHydrideStorage.M.equilibriumLoadingAdsorptionDummy(.MetalHydrideStorage.M.State(#(s.T), #(s.p), #(s.omega)))). The argument has type: .MetalHydrideStorage.M.equilibriumLoadingAdsorptionDummy<function>(#Real u) => #Real expected type: .Modelica.Math.Nonlinear.Interfaces.partialScalarFunction<function>(Real u) => Real Error: Error occurred while flattening model MetalHydrideStorage.M "
Code:
model M import SI = Modelica.SIunits; record State SI.Temperature T; SI.AbsolutePressure p; Real omega; end State; function equilibriumPressureAdsorption input State s; output SI.Pressure p_eq; protected Real p1, p2; constant Real alpha = 0.5; constant Real a1 = -4.884, a2 = -2374.7, a3 = 3.4129 * 10 ^ (-3), a4 = 48.816, a5 = -50.404, a6 = 22.711, a7 = -7.9717, a8 = 1.233; constant Real b1 = -452.34, b2 = 15.522, b3 = 4.0954, b4 = -1.3222 * 10 ^ (-2), b5 = 1.4406 * 10 ^ (-5); Real omega = s.omega * 100; algorithm p1 := exp(a1 + a2 / s.T + a3 * s.T + a4 * omega ^ alpha + a5 * omega + a6 * omega ^ 2 + a7 * omega ^ 3 + a8 * omega ^ 4); p2 := exp(b1 + b2 * omega + b3 * s.T + b4 * s.T ^ 2 + b5 * s.T ^ 3); p_eq := p1 + p2; end equilibriumPressureAdsorption; function equilibriumLoadingAdsorption "Uses modelica's root finding algorithm to calculate the equilibrium loading based on the equilibrium pressure function" input State s; output Real omega_eq; algorithm omega_eq := Modelica.Math.Nonlinear.solveOneNonlinearEquation(function equilibriumLoadingAdsorptionDummy(s = s), 0, 0.02, 1e-006); end equilibriumLoadingAdsorption; function equilibriumLoadingAdsorptionDummy extends Modelica.Math.Nonlinear.Interfaces.partialScalarFunction; input State s; algorithm y := equilibriumPressureAdsorption(State(T = s.T, p = s.p, omega = u)) - s.p; end equilibriumLoadingAdsorptionDummy; Real r = equilibriumLoadingAdsorption(State(time * 100 + 273.15, 50, 0.01)); Real b = equilibriumPressureAdsorption(State(time * 100 + 273.15, 50, 0.01)); annotation(uses(Modelica(version = "3.2.1"))); end M;
Change History (2)
comment:1 by , 10 years ago
Component: | Unknown → Frontend |
---|---|
Owner: | changed from | to
Status: | new → accepted |
comment:2 by , 10 years ago
Resolution: | → fixed |
---|---|
Status: | accepted → closed |
Note:
See TracTickets
for help on using tickets.
Fixed in r21743.